精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=1,

(1)设bn,求数列{bn}的通项公式;

(2)求数列{an}的前n项和Sn

 

【答案】

(1) bn=2- (2) n(n+1)+-4

【解析】(1)由可知bn+1=bn,然后可利用叠加法求bn.

(2)再利用bn可求出,然后再利用分组求和和错位相减法求和即可.

解:(1)由已知得b1=a1=1且

即bn+1=bn

从而b2=b1

b3=b2

bn=bn-1 ( n≥2),

于是bn=b1+…+

=2- ( n≥2),      ………………4分

又b1=1,       ………………5分

∴{bn}的通项公式bn=2-    .………………6分

(2)由(1)知an=n·bn=2n-,     ………………7分

令Tn+…+

则2Tn=2++…+,    ………………8分

作差得:

Tn=2+(+…+)-=4-,     ………………10分

∴Sn=(2+4+6+…+2n)-Tn

=n(n+1)+-4. ………………12分

说明:各题如有其它解法可参照给分.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案