精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若 (acosB+bcosA)=2csinC,a+b=4,且△ABC的面积的最大值为 ,则此时△ABC的形状为(
A.锐角三角形
B.直线三角形
C.等腰三角形
D.正三角形

【答案】C
【解析】解:∵ (acosB+bcosA)=2csinC, ∴ (sinAcosB+sinBcosA)=2sin2C,
sinC=2sin2C,且sinC>0,
∴sinC=
∵a+b=4,可得:4≥2 ,解得:ab≤4,(当且仅当a=b=2成立)
∵△ABC的面积的最大值SABC= absinC≤ ×4× =
∴a=b=2,
∴则此时△ABC的形状为等腰三角形.
故选:C.
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠ 时,(x﹣ )f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为(
A.2
B.4
C.5
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x,过焦点F作与x轴垂直的直线l1 , C上任意一点P(x0 , y0)(y0≠0)处的切线为l,l与l1交于M,l与准线交于N,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(f( ));
(2)若x0满足f(f(x0))=x0 , 且f(x0)≠x0 , 则称x0为f(x)的二阶不动点,求函数f(x)的二阶不动点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:四棱锥P﹣ABCD中,底面ABCD是平行四边形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,点F是PB的中点,点E在边BC上移动.
(1)证明:当点E在边BC上移动时,总有EF⊥AF;
(2)当CE等于何值时,PA与平面PDE所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:

天数x(天)

3

5

7

9

11

13

15

日经济收入Q(万元)

154

180

198

208

210

204

190


(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明. ①Q=ax+b,②Q=﹣x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1. (Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=5 ,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,PD=AD=AB=1,DC=2.
(1)求证:BC⊥平面PBD;
(2)求二面角A﹣PB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数 的图象,只需将函数y=cos2x的图象(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

同步练习册答案