精英家教网 > 高中数学 > 题目详情
已知点P在抛物线y2=4x上运动,F为抛物线的焦点,点M的坐标为(3,2),当PM+PF取最小值时点P的坐标为
 
分析:设点P在准线上的射影为D,由抛物线的定义把问题转化为求PM+PD的最小值,同时可推断出当D,P,M三点共线时PM+PD最小,答案可得.
解答:解:设点P在准线上的射影为D,由抛物线的定义可知PF=PD,
∴要求PM+PF的最小值,即求PM+PD的最小值,
只有当D,P,M三点共线时PM+PD最小,
且最小值为3-(-1)=4
令y=2,可得x=1,
∴当PM+PF取最小值时点P的坐标为(1,2).
故答案为:(1,2).
点评:本题考查了抛物线的定义与标准方程、平面几何中求距离和的最小值等知识,正确运用抛物线的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为(  )
A、(
1
4
,-1)
B、(
1
4
,1)
C、(1,2)
D、(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线y2=4x上,则点P到直线l1:4x-3y+6=0的距离和到直线l2:x=-1的距离之和的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和的最小值为
5
4
5
4

查看答案和解析>>

同步练习册答案