精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)是定义在(1,+∞)上的可导函数,f′(x)为其导函数,e为自然对数的底数,且xxf′(x)>ef(x)恒成立,则当m>n>0时,有(  )
A.mf(xn)>nf(xmB.mf(xn)<nf(xm
C.mf(xn)=nf(xmD.mf(xn)与nf(xm)大小不确定

分析 构造函数g(x),根据已知条件求出g(x)的单调性,从而判断出g(xm)>g(xn),得出结论即可.

解答 解:∵x>1时,xxf′(x)>ef(x)恒成立,
∴lnxf′(x)-$\frac{1}{x}$f(x)>0,(x>1),
令g(x)=$\frac{f(x)}{lnx}$,(x>1),
则g′(x)=$\frac{f′(x)lnx-\frac{1}{x}f(x)}{{(lnx)}^{2}}$>0,
g(x)在(1,+∞)递增,
由m>n>0,x>1得:xm>xn>1,
∴g(xm)>g(xn),
∴mf(xn)<nf(xm),
故选:B.

点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某公司4个店某月销售额和利润如表:
商店名称ABCD
销售额(x)/千万元2356
利润额(y)/百万元2334
(1)画出销售额关于利润额的散点图.
(20若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{{x_1}^2+x{{{\;}_2}^2}+…+{x_n}^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某品牌服装专卖店为了解保暖衬衣的销售量y(件)与平均气温x(℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:
时间 二月上旬二月中旬 二月下旬 三月上旬 
 旬平均气温x(℃) 3 8 12 17
 旬销售量y(件) 55 m 3324
由表中数据算出线性回归方程y=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=-2,样本中心点为(10,38).
(1)表中数据m=40;
(2)气象部门预测三月中旬的平均气温约为22℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-mx.
(1)求函数f(x)的单调区间;
(2)当m=1时,令g(x)=$\frac{a{x}^{2}+ax}{f(x)}$+lnx,若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,对?t∈(1,+∞),?s∈(0,1),求证:g(t)-g(s)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$ax2+2alnx+(a-2)x,a∈R.
(1)当a=1时,求函数f(x)的单调区间;
(2)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{2}-{x}_{1}}$<a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,且AB=AC=$\frac{1}{2}$AA1=2.
( I)求证:DE∥平面ABC;
(Ⅱ)求三棱锥A1-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知α为第四象限角,且cosα-|sinα-cosα|=-$\frac{3}{5}$,求tanα,sin2α,cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a∈R,b∈R,且a>b,则下列不等式中一定成立的是(  )
A.$\frac{a}{b}$>1B.a2>b2C.(${\frac{1}{2}}$)a<(${\frac{1}{2}}$)bD.lg(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asinx+cosx,A>0.
(1)若A=1,求f(x)的单调递增区间;
(2)函数f(x)在x=x0处取得最大值$\sqrt{13}$,求cosx0 的值.

查看答案和解析>>

同步练习册答案