精英家教网 > 高中数学 > 题目详情

已知各项均为正数的数列满足,且,其中.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足是否存在正整数m、n(1<m<n),使得成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。

(Ⅰ)数列的通项公式为;(Ⅱ)存在,

解析试题分析:(Ⅰ)求数列的通项公式,首先须知道数列的特征,由题意可得,,由于各项均为正数,故有?即,这样得到数列是公比为的等比数列,由可求出,从而可得数列的通项公式;(Ⅱ)设数列满足是否存在正整数,使得成等比数列,首先求出数列的通项公式,,然后假设存在正整数,使得成等比数列,则,整理可得,只要即可,解不等式求出的范围,看是否有正整数,从而的结论.
试题解析:(Ⅰ)??因为?即?
?所以有?即
所以数列是公比为的等比数列?
?解得
从而,数列的通项公式为。        6分
(II)=,若成等比数列,则

,可得
所以,解得:
,且,所以,此时
故当且仅当?使得成等比数列。        13分
考点:等比数列的定义,及通项公式,探索性命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Snn2n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

各项均为正数的等比数列中,
(Ⅰ)求数列通项公式;
(Ⅱ)若等差数列满足,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{}的前n项和为
(Ⅰ)设,证明:数列是等比数列;
(Ⅱ)求数列的前项和
(Ⅲ)若.求不超过的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是常数,问当满足什么条件时,函数有最大值,并求出取最大值时的值;
(2)是否存在实数对同时满足条件:(甲)取最大值时的值与取最小值的值相同,(乙)
(3)把满足条件(甲)的实数对的集合记作A,设,求使的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在点处的切线与轴的交点为,其中为正实数.
(1)用表示
(2),若,试证明数列为等比数列,并求数列的通项公式;
(3)若数列的前项和,记数列的前项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差.且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意自然数均有 成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为
(Ⅰ)设,证明:数列是等比数列;
(Ⅱ)求数列的前项和.

查看答案和解析>>

同步练习册答案