精英家教网 > 高中数学 > 题目详情

【题目】数学发展史知识测验后,甲、乙、丙三人对成绩进行预测:

甲说:我的成绩比乙高;

乙说:丙的成绩比我和甲的都高;

丙说:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.

【答案】.

【解析】

本题可从三人预测中互相关联的乙、丙两人的预测入手,因为只有一个人预测正确,而乙对则丙必对,丙对乙很有可能对,假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙、丙错误,即可求得答案.

由题意,可把三人的预测简写如下:

甲:甲乙.

乙:丙乙且丙甲.

丙:丙乙.

只有一个人预测正确,

分析三人的预测,可知:乙、丙的预测不正确.

如果乙预测正确,则丙预测正确,不符合题意.

如果丙预测正确,假设甲、乙预测不正确,

则有丙乙,乙甲,乙预测不正确,而丙乙正确,

只有丙甲不正确,

丙,这与丙乙,乙甲矛盾,不符合题意.

只有甲预测正确,乙、丙预测不正确,甲乙,乙丙.

三人中预测正确的是:甲.

故答案为:甲.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

,试证明:当时,

若对任意均有两个极值点

试求b应满足的条件;

时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:(1);(2);(3)时,.大小关系

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥的三视图如图所示,.

1)求该三棱锥的表面积;

2)求该三棱锥内切球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析,得到如下列联表(单位:人).

经常使用

偶尔使用或不使用

合计

岁及以下

岁以上

合计

1)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用共享单车的情况与年龄有关;

2)(i)现从所选取的岁以上的网友中,采用分层抽样的方法选取人,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率;

ii)将频率视为概率,从市所有参与调查的网友中随机选取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,数列的前项和,点)均在函数的图像上.

(1)求数列的通项公式;

(2)设是数列的前项和,求满足)的最大正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.

(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;

(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

同步练习册答案