精英家教网 > 高中数学 > 题目详情
某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.
【答案】分析:(Ⅰ)根据距离为1km时,测算宿舍建造费用为100万元,可求k的值,由此,可得f(x)的表达式;
(Ⅱ),利用基本不等式,即可求出函数的最小值.
解答:解:(Ⅰ)根据题意,距离为1km时,测算宿舍建造费用为100万元
,∴k=800(3分)
 (7分)
(Ⅱ)∵ (11分)
当且仅当即x=5时f(x)min=75. (14分)
答:宿舍应建在离厂5km处可使总费用f(x)最小为75万元. (15分)
点评:本题考查函数模型的构建,考查利用基本不等式求函数的最值,注意基本不等式的使用条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p=
k3x+5
(0≤x≤8)
,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p=
k
3x+5
(0≤x≤8)
,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市宝应县曹甸高级中学高三(上)第二次效益检测数学试卷(解析版) 题型:解答题

某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省扬州市宝应县曹甸高级中学高三(上)第二次效益检测数学试卷(解析版) 题型:解答题

某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

同步练习册答案