精英家教网 > 高中数学 > 题目详情
已知某线性规划问题的约束条件是
y≤x
3y≥x
x+y≤4
,则下列目标函数中,在点(3,1)处取得最小值的是(  )
A、z=2x-y
B、z=-2x+y
C、z=-
1
2
x-y
D、z=2x+y
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
A.由z=2x-y得y=2x-z,平移直线可得当直线经过点A(3,1)时,截距最小,此时z最大,
B.由z=-2x+y得y=2x+z,平移直线可得当直线经过点A(3,1)时,截距最小,此时z最小,满足条件,
C由z=-
1
2
x-y得y=-
1
2
x-z,平移直线可得当直线经过点B时,截距最大,此时z最小,
D.由z=2x+y得y=-2x+z,平移直线可得当直线经过点A(3,1)时,截距最大,此时z最大,
故选:B
点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)在R上满足f(1+x)=f(1-x),f(x+2)=-f(2-x).
(1)求f(2)的值.
(2)判断f(x)的奇偶性,并说明理由.
(3)若f(1)=
1
2
,试求出f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两圆x2+y2+2x-6y-26=0和x2+y2-4x+2y+4=0的位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数的图象是函数f(x)=sin2x-
3
cos2x的图象向右平移
π
3
个单位得到的,则函数的图象的对称轴可以为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在双曲线
x2
4
-
y2
12
=1的右支上求一点 P,使它到左焦点的距离是它到右准线距离的4倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈(0,
π
2
)时,函数h(x)=
1+2sin2x
sin2x
的最小值为b,若定义在R上的函数f(x)满足对任意的x,y都有f(x+y)=f(x)+f(y)-b成立,设M,N分别为f(x)在[-b,b]上的最大值与最小值,则M+N的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合U=R,A={x∈Z|x≤-1},B={-2,-1,0,1,2},则(∁UA)∩B等于(  )
A、{-2,-1,0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(-3,2)在抛物线C:y2=2px(p>0)的准线上,过点P的直线与抛物线C相切于A,B两点,则直线AB的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点P(m,0),O为坐标原点,若在抛物线C上存在一点Q,使得∠OQP=90°,则实数m的取值范围是(  )
A、(4,8)
B、(4,+∞)
C、(0,4)
D、(8,+∞)

查看答案和解析>>

同步练习册答案