精英家教网 > 高中数学 > 题目详情
7.已知数列{an}中,a1=1,$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,求数列{an}的通项公式.

分析 通过a1=1、$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$可知数列{$\frac{1}{{a}_{n}}$}是以1为首项、以$\frac{1}{2}$为公差的等差数列,进而计算可得结论.

解答 解:∵a1=1,
∴$\frac{1}{{a}_{1}}$=1,
又∵$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=$\frac{1}{2}$,
∴数列{$\frac{1}{{a}_{n}}$}是以1为首项、以$\frac{1}{2}$为公差的等差数列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$.

点评 本题考查数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.函数f(x)=|2x-1|-|x-2|,若f(x)≥0,
(1)求x的取值范围;
(2)若f(x)=3|x-1|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,一块半径为2米的半圆形钢板,O为圆心,现从中截出两块内接矩形部件ABCD和EFGH,且HG=2FG,点P为GH的中点,∠POG=θ.
(1)当θ=15°时,求矩形ABCD的面积;
(2)设△OGH的面积为S,当θ变化时,求y=S+BC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.$\frac{co{s}^{2}33°-co{s}^{2}57°}{sin21°-cos21°}$等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.-$\sqrt{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sinα=-$\frac{\sqrt{5}}{5}$,tanβ=-$\frac{1}{3}$,且α,β∈(-$\frac{π}{2}$,0).
(1)求α+β的值;
(2)求$\sqrt{2}$sin($\frac{π}{4}$-α)+cos($\frac{π}{4}$+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且an>0,an+$\frac{1}{{a}_{n}}$=2Sn,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,满足Sn=2an-2n,求证:数列{an+2}为等比数列并求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对正方体的八个顶点作两两连线,其中成异面直线的有(  )
A.3(C${\;}_{4}^{1}$C${\;}_{4}^{3}$+C${\;}_{4}^{2}$C${\;}_{4}^{2}$)对B.3(C${\;}_{8}^{4}$-12)对
C.3(C${\;}_{8}^{4}$-6)对D.3C${\;}_{8}^{4}$对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若cos(45°-x)=-$\frac{4}{5}$(225°<x<315°),求$\frac{sin2x-2si{n}^{4}x}{1+tanx}$的值.

查看答案和解析>>

同步练习册答案