精英家教网 > 高中数学 > 题目详情
设M是含有n个正整数的集合,如果M中没有一个元素是M中另外两个不同元素之和,则称集合M是n级好集合,
(Ⅰ)判断集合{1,3,4,7,9}是否是5级好集合,并写出另外一个5级好集合,满足其最大元素不超过9;
(Ⅱ)给定正整数a,设集合M={a,a+1,a+2,…a+k}是好集合,其中k为正整数,试求k的最大值,并说明理由;
(Ⅲ)对于任意n级好集合M,求集合M中最大元素的最小值(用n表示).
分析:(I)由1+3=4∈M,可得M不是5级好集合.举例:集合{1,3,5,7,9}是5级好集合.
(II)若a=1,则只能是M={1,2};若a=2,则只能是{2,3,4};若a=3,则只能是{3,4,5,6};…;
以此类推,可得只能是M={a,a+1,…,2a},即可得到k的最大值.
(III)对于任意n级好集合M,求集合M中最大元素的最小值为2n-2.用反证法证明:若最大元素为2n-3,则此时M中的运算个数至多为n-2+1=n-1<n,故当最大元素为2n-3时,不能取得M.即可得出.
解答:解:(I)∵1+3=4∈M,∴M不是5级好集合.
集合{1,3,5,7,9}是5级好集合.
(II)若a=1,则只能是M={1,2};
若a=2,则只能是{2,3,4};
若a=3,则只能是{3,4,5,6};…;
以此类推,只能是M={a,a+1,…,2a},因此k的最大值为2a-a=a.
(III)对于任意n级好集合M,集合M最大元素的最小值为2n-2.
若最大元素为2n-3,将{1,2,…,2n-3}分为:
t=(2n-3),
t1=(1,2n-4),
t2=(2,2n-5),

tn-2=(n-2,n-1).
则显然t1~tn-2这n-2组中每一组至多选择一个数,
故此时M中的运算个数至多为n-2+1=n-1<n,故当最大元素为2n-3时,不能取得M.
同理可证最大元素<2n-3时不满足题设条件.
当最大元素为2n-2时,取M={n-1,n,n+1,n+2,…,2n-2}.则此集合对任意n满足题意.
综上可知:对于任意n级好集合M,求集合M中最大元素的最小值为2n-2.
点评:正确理解和集合的意义及通过举例进行类比推理、反证法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
0   当i∉AJ
1        当i∈AJ时  

(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:
5cmn
-
cmcn
>1对任何正整数m,n都成立.(第1小题用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=数学公式
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:数学公式-数学公式>1对任何正整数m,n都成立.(第1小题用表)
1234567
10
20
30
40
50
60
70

查看答案和解析>>

科目:高中数学 来源:2010年安徽省安庆一中高考数学三模试卷(理科)(解析版) 题型:解答题

集合A1,A2,A3,…,An为集合M={1,2,3,…,n}的n个不同的子集,对于任意不大于n的正整数i,j满足下列条件:
①i∉Ai,且每一个Ai至少含有三个元素;
②i∈Aj的充要条件是j∉Aj(其中i≠j).
为了表示这些子集,作n行n列的数表(即n×n数表),规定第i行第j列数为:aij=
(1)该表中每一列至少有多少个1;若集合M={1,2,3,4,5,6,7},请完成下面7×7数表(填符合题意的一种即可);
(2)用含n的代数式表示n×n数表中1的个数f(n),并证明n≥7;
(3)设数列{an}前n项和为f(n),数列{cn}的通项公式为:cn=5an+1,证明不等式:->1对任何正整数m,n都成立.(第1小题用表)
1234567
1
2
3
4
5
6
7

查看答案和解析>>

同步练习册答案