3£®ÒÑÖª$\overrightarrow{a}$=£¨$\sqrt{3}$sin£¨¦Ð+¦Øx£©£¬cos¦Øx£©£¬$\overrightarrow{b}$=£¨sin£¨$\frac{3}{2}$¦Ð-¦Øx£©£¬-cos¦Øx£©£¬¦Ø£¾0£®Éèf£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×îСÕýÖÜÆÚΪ¦Ð£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ò£©µ±x¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©Ê±£¬Çóf£¨x£©µÄÖµÓò£»
£¨¢ó£©ÇóÂú×ãf£¨a£©=0ÇÒ0£¼¦Á£¼¦ÐµÄ½Ç¦ÁµÄÖµ£®

·ÖÎö £¨¢ñ£©ÀûÓÃÊýÁ¿»ýµÄ×ø±ê±íʾÇóf£¨x£©µÄ½âÎöʽ£¬»¯¼òºó½áºÏ¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔÇóµÃf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ò£©ÓÉx¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©£¬ÇóµÃ$2x-\frac{¦Ð}{6}$µÄ·¶Î§£¬½øÒ»²½Çóf£¨x£©µÄÖµÓò£»
£¨¢ó£©Çó³öÂú×ãf£¨¦Á£©=$sin£¨2¦Á-\frac{¦Ð}{6}£©$=0µÄ¦ÁµÄÈ¡Öµ¼¯ºÏ£¬½áºÏ¦ÁµÄ·¶Î§ÇóµÃ½Ç¦ÁµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\overrightarrow{a}$=£¨$\sqrt{3}$sin£¨¦Ð+¦Øx£©£¬cos¦Øx£©£¬$\overrightarrow{b}$=£¨sin£¨$\frac{3}{2}$¦Ð-¦Øx£©£¬-cos¦Øx£©£¬µÃ
f£¨x£©=$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$sin£¨¦Ð+¦Øx£©•sin£¨$\frac{3}{2}$¦Ð-¦Øx£©-cos2¦Øx
=$\sqrt{3}$sin¦Øx•cos¦Øx-cos2¦Øx=$\frac{\sqrt{3}}{2}sin2¦Øx-\frac{1}{2}cos2¦Øx$$-\frac{1}{2}$=$sin£¨2¦Øx-\frac{¦Ð}{6}£©$$-\frac{1}{2}$£®
¡ßf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬¡à$\frac{2¦Ð}{2¦Ø}=¦Ð$£¬¼´¦Ø=1£®
¡à$f£¨x£©=sin£¨2x-\frac{¦Ð}{6}£©-\frac{1}{2}$£®
ÓÉ$-\frac{¦Ð}{2}+2k¦Ð¡Ü2x-\frac{¦Ð}{6}¡Ü\frac{¦Ð}{2}+2k¦Ð$£¬½âµÃ£º$-\frac{¦Ð}{6}+k¦Ð¡Üx¡Ü\frac{¦Ð}{3}+k¦Ð£¬k¡ÊZ$£®
¡àf£¨x£©µÄµ¥µ÷ÔöÇø¼äΪ[$-\frac{¦Ð}{6}+k¦Ð£¬\frac{¦Ð}{3}+k¦Ð$]£¬k¡ÊZ£»
£¨¢ò£©µ±x¡Ê£¨-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{6}$£©Ê±£¬$2x-\frac{¦Ð}{6}¡Ê£¨-\frac{5¦Ð}{6}£¬\frac{¦Ð}{6}£©$£¬Ôòº¯ÊýµÄÖµÓòΪ[$-\frac{3}{2}£¬0$£©£»
£¨¢ó£©ÓÉf£¨¦Á£©=$sin£¨2¦Á-\frac{¦Ð}{6}£©$=0£¬µÃ$2¦Á-\frac{¦Ð}{6}=k¦Ð$£¬
¡à$¦Á=\frac{¦Ð}{12}+\frac{k¦Ð}{2}£¬k¡ÊZ$£¬ÓÖ0£¼¦Á£¼¦Ð£¬
¡àÈ¡k=0¡¢1ʱ£¬ÇóµÃ$¦Á=\frac{¦Ð}{12}$¡¢$\frac{7¦Ð}{12}$£®

µãÆÀ ±¾Ì⿼²éƽÃæÏòÁ¿µÄ×ø±êÔËË㣬¿¼²éÁËÈý½Çº¯ÊýÖеĺãµÈ±ä»»Ó¦Ó㬿¼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®´Ó×ÔÈ»Êý1£¬2£¬3£¬4£¬5ÖУ¬ÈÎÒâÈ¡³öÁ½¸öÊý×é³ÉÁ½Î»µÄ×ÔÈ»Êý£¬ÔòÔÚÁ½Î»×ÔÈ»ÊýÖÐÈ¡³öµÄÊýÇ¡ºÃÄܱ»3Õû³ýµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{2}{5}$B£®$\frac{1}{5}$C£®$\frac{3}{10}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÊµÊýx£¬y£¬m£¬nÂú×㣮x2+y2+2x+2y-8=0£®m2+n2+8m+8n+28=0£¬Ôò£¨x-m£©2+£¨y-n£©2µÄ×î´óÖµºÍ×îСֵ·Ö±ðΪ£¨2+$\sqrt{10}$+3$\sqrt{2}$£©2£¬0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow{OA}$ÔÚ»ùµ×{$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$}ϵÄ×ø±êΪ£¨8£¬6£¬4£©£¬ÆäÖÐ$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$£¬$\overrightarrow{b}$=$\overrightarrow{j}$+$\overline{k}$£¬$\overrightarrow{c}$=$\overrightarrow{k}$+$\overrightarrow{i}$ÔòÏòÁ¿$\overrightarrow{OA}$ÔÚ»ùµ×£¨$\overrightarrow{i}$£¬$\overrightarrow{j}$£¬$\overrightarrow{k}$£©ÏµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨12£¬14£¬10£©B£®£¨10£¬12£¬14£©C£®£¨14£¬12£¬10£©D£®£¨4£¬3£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÒÑÖªPΪƽÐÐËıßÐÎABCDËùÔÚƽÃæÍâÒ»µã£¬MÊÇÏ߶ÎPCµÄÖе㣮
£¨1£©ÇóÖ¤£ºÏòÁ¿$\overrightarrow{PA}$£¬$\overrightarrow{MB}$£¬$\overrightarrow{MD}$¹²Ã棻
£¨2£©ÇóÖ¤£ºÏòÁ¿$\overrightarrow{MA}$£¬$\overrightarrow{MB}$£¬$\overrightarrow{MC}$²»¹²Ã棻
£¨3£©ÈôÏòÁ¿$\overrightarrow{PD}$=x$\overrightarrow{MA}$+y$\overrightarrow{MB}$+z$\overrightarrow{MC}$£¬Çóx£¬y£¬zµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇan=$\frac{n}{2n+1}$£¬ÄÇôanÓëan+1µÄ´óС¹ØϵÊÇan+1£¾an£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªOΪ×ø±êÔ­µã£¬µãM£¨1-$\sqrt{3}$cos2x£¬1£©£¬µãN£¨1£¬a+sin2x£©£¨x¡ÊR£©£¨aΪ³£ÊµÊý£©£¬ÇÒy=$\overrightarrow{OM}•\overrightarrow{ON}$£¬
£¨1£©Çóy¹ØÓÚxµÄº¯Êý¹Øϵʽy=f£¨x£©£»
£¨2£©µ±x¡Ê[0£¬$\frac{¦Ð}{4}$]ʱ£¬f£¨x£©µÄ×î´óÖµÊÇ4£¬ÇóaµÄÖµ£¬²¢Çó´ËʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®f£¨x£©ÊǶ¨ÒåÓòÔÚRÉϵÄÔöº¯Êý£ºÇÒÂú×ãf£¨$\frac{x}{y}$£©=f£¨x£©-f£¨y£©£®
£¨1£©Çóf£¨1£©µÄÖµ£º
£¨2£©Èôf£¨6£©=1£¬Çó·½³Ìf£¨x£©=2µÄ½â£»
£¨3£©Èôf£¨6£©=1£¬½â²»µÈʽf£¨x+2£©-f£¨$\frac{1}{x}$£©£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÉèOΪ×ø±êÔ­µã£¬ÈôµãAµÄ×ø±êΪ£¨-1£¬3£©£¬Ôò$\overrightarrow{OA}$µÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨1£¬3£©B£®£¨3£¬-1£©C£®£¨1£¬-3£©D£®£¨-1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸