精英家教网 > 高中数学 > 题目详情

当x∈R时,f(x)满足f(x+y)=f(x)+f(y),则f(x)一定是


  1. A.
    奇函数
  2. B.
    偶函数
  3. C.
    非奇非偶函数
  4. D.
    既是奇函数,又是偶函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A⊆R,B⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x、y的广义“距离”;
(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
今给出三个二元函数,请选出所有能够成为关于x、y的广义“距离”的序号:
①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
x-y

能够成为关于的x、y的广义“距离”的函数的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的函数f(x)=ax4+bx3+cx2+dx+e,当x=-1时,f(x)取得极大值
2
3
,并且函数y=f(x-1)的图象关于点(1,0)对称.
(Ⅰ)求f(x)的表达式;
(Ⅱ)试在函数f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-
2
2
]
上;
(Ⅲ)若x=
2t-1
2t
y=
2
(1-3t)
3t
(t∈R+),求证:|f(x)-f(y)|<
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义域为R的偶函数,当x≥0时,f(x)=log2(x+1)
(1)当x<0时,求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间,以及在每一个单调区间上,它是增函数还是减函数,并指出f(x)的值域.(不要求证明)

查看答案和解析>>

科目:高中数学 来源:江苏省泗阳中学2012届高三第一次调研考试数学试题(普通班) 题型:044

设二次函数满足下列条件:

①当x∈R时,f(x)的最小值为0,且f(x-1)=f(-x-1)成立;

②当x∈(0,5)时,x≤f(x)≤2|x-1|+1恒成立.

(1)求f(1)的值;

(2)求f(x)的解析式;

(3)求最大的实数m(m>1),使得存在实数t,只要当x∈[1,m]时,就有成立.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省广州市执信中学高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)为定义域为R的偶函数,当x≥0时,f(x)=log2(x+1)
(1)当x<0时,求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间,以及在每一个单调区间上,它是增函数还是减函数,并指出f(x)的值域.(不要求证明)

查看答案和解析>>

同步练习册答案