精英家教网 > 高中数学 > 题目详情
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的前10项的和S10及T10
分析:根据等差数列的性质可知a2+a4=2a3,根据等比数列的性质可知b2b4=b32,而已知a2+a4=b3,b2b4=a3,所以得到b3=2a3,a3=b32,两者联立,由b3≠0,即可求出a3与b3的值,然后分别根据a1=b1=1,利用等差及等比数列的通项公式求出等差数列的公差d及等比数列的公比q,然后根据等差、等比数列的前n项和的公式即可求出{an}及{bn}的前10项的和S10及T10的值.
解答:解:∵{an}为等差数列,{bn}为等比数列,
∴a2+a4=2a3,b2b4=b32
已知a2+a4=b3,b2b4=a3
∴b3=2a3,a3=b32
得b3=2b32
∵b3≠0∴b3=
1
2
, a3=
1
4

由a1=1,a3=
1
4
知{an}的公差为d=-
3
8

S10=10a1+
10×9
2
d=-
55
8

由b1=1,b3=
1
2
知{bn}的公比为q=
2
2
q=-
2
2

q=
2
2
时,T10=
b1(1-q10)
1-q
=
31
32
(2+
2
)

q=-
2
2
时,T10=
b1(1-q10)
1-q
=
31
32
(2-
2
)
点评:此题考查学生灵活运用等差、等比数列的通项公式及等差、等比数列的前n项和的公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设an为等差数列,bn为等比数列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求数列cn的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、设{an}为等差数列,公差d=-2,sn为其前n项和,若s10=s11,则a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,则下列数列中,成等差数列的个数为(  )
①{an2} ②{pan} ③{pan+q} ④{nan}(p、q为非零常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(2)令bn=C an(注释:bn等于C的an次方),(其中C为常数,且C≠0,n∈N*),求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,a1>0,a6+a7>0,a6•a7<0则使Sn>0成立的最大的n为(  )

查看答案和解析>>

同步练习册答案