精英家教网 > 高中数学 > 题目详情
13.判断下列推出关系是否成立:
(1)|a|=7?a=7或a=-7;
(2)x2+y2=0?x=0或y=0.

分析 (1)利用绝对值的意义可知成立.
(2)x2+y2=0⇒$\left\{\begin{array}{l}{{x}^{2}=0}\\{{y}^{2}=0}\end{array}\right.$,解得x=y=0.反之,由x=0或y=0.推不出x2+y2=0.即可判断出是否成立.

解答 解:(1)由|a|=7⇒a=7或a=-7;反之,由a=7或a=-7⇒|a|=7,因此|a|=7?a=7或a=-7成立.
(2)x2+y2=0⇒$\left\{\begin{array}{l}{{x}^{2}=0}\\{{y}^{2}=0}\end{array}\right.$,解得x=y=0.反之,由x=0或y=0.推不出x2+y2=0.因此x2+y2=0?x=0或y=0不成立.

点评 本题考查了绝对值的意义、实数的性质、简易逻辑的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知幂函数y=f(x)的图象经过点(4,$\frac{1}{2}$),则f(8)等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,A、B、C所对的边分别是a、b、c,$\overrightarrow{m}$=(b-a,a-c-b),$\overrightarrow{n}$=(a-c,b+c),若$\overrightarrow{m}$∥$\overrightarrow{n}$,且a(sinB-cosC)=c•cosA,则C等于(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn,数列{bn}是公差为$\frac{1}{2}$的等差数列,且b4是b2与b6+1的等比中项,bn=$\frac{{S}_{n}}{3n-1}$(n∈N*).
(1)求数列{an}的通项公式;
(2)令cn=($\frac{1}{2}$)an,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等差数列{an}满足3a10=5a17,且a1>0,Sn为其前n项和,则数列{Sn}的最大项是(  )
A.S24B.S23C.S26D.S27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.全集U=R,已知集合A={x|(x-2)(x-8)≤0},B={x|$\frac{6-x}{x-1}$>0},P={x|x>a}.
(1)求A∪B,(∁UA)∩B;
(2)如果A∩P≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正数a,b满足a+4b=4,求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知log53=a,log54=b,求证:log2512=$\frac{1}{2}$(a+b)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合M={y|y=ex+$\frac{1}{2}$},N={x∈N|0≤x+1≤3},则M∩N等于(  )
A.{1,2}B.{0,1,2}C.($\frac{1}{2}$,2]D.{1,2,3}

查看答案和解析>>

同步练习册答案