精英家教网 > 高中数学 > 题目详情

(理)对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界数列”.

(1)设数列an=2n+1,请写出一个公比不为1的等比数列{bn},使数列{bn}是数列{an}的“下界数列”;

(2)设数列,求证数列{bn}是数列{an}的“下界数列”;

(3)设数列,构造,求使恒成立的k的最小值.

答案:
解析:

  (理)

  (1)等,答案不唯一  4分

  (2),当最小值为9  6分

  ,则

  因此,时,最大值为6  9分

  所以,,数列是数列的“下界数列”  10分

  (3)

    11分

    12分

  不等式为  13分

  设,则  15分

  当时,单调递增,时,取得最小值,因此  17分

  的最小值为  18分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),,试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)在数列{an}中,a1=6,且对任意大于1的正整数n,点(
an
an-1
)在直线x-y=
6
上,则数列{
a n
n3(n+1)
}的前n项和Sn=
6n
n+1
6n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年正定中学一模理)    (12分)        

     设数列{an}的各项都是正数,且对任意nN+,都有,记Sn为数列{an}的前n项和.

  

   (1)求数列{an}的通项公式;

   (2)若为非零常数,n∈N+),问是否存在整数,使得对任意 nN+,都有bn+1>bn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010年上海市华东师大二附中高三数学综合练习试卷(01)(解析版) 题型:解答题

对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

同步练习册答案