精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为Sn,点P(Sn,an)在直线(2-m)x+2my-m-2=0上,其中m为常数,且m>0.
(Ⅰ)求证:{an}是等比数列,并求其通项an
(Ⅱ)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1),(n∈N+,n≥2),求证:数学公式是等差数列,并求bn
(Ⅲ)设数列{cn}满足cn=bnbn+1,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N+)求T的最大值.

解:(Ⅰ)∵点P(Sn,an)在直线(2-m)x+2my-m-2=0上,
∴(2-m)Sn+2man-m-2=0*(1分)
当n=1时,a1=S1,∴(2-m)a1+2ma1-m-2=0,
∴a1(m+2)=m+2∴a1=1,(2分)
当n≥2时,由*式知(2-m)Sn-1+2man-1-m-2=0**,
两式相减得(2+m)an=2man-1∵m>0∴

又当n=1时也适合,∴{an}是等比数列,
通项;(5分)

(Ⅱ)由Ⅰ知


,又也适合,
成等差数列,(7分)
其通项,∴(9分)
(Ⅲ)∵{cn}满足Tn为数列{cn}的前n项和,
∴{Tn}是递增娄数列;(11分)
,要满足Tn≥T对任意n∈N+都成立,
.∴T的最大值为.(13分)
分析:(Ⅰ)由题设知(2-m)Sn+2man-m-2=0,当n=1时,a1=S1,(2-m)a1+2ma1-m-2=0,a1=1,当n≥2时,(2-m)Sn-1+2man-1-m-2=0,
两式相减得(2+m)an=2man-1,由此能求出其通项an
(Ⅱ)由,知,由此能证明成等差数列;
(Ⅲ)由{cn}满足,知Tn递增.,要满足Tn≥T对任意n∈N+都成立,.由此能求出T的最大值.
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用,挖掘题设中的陷含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案