精英家教网 > 高中数学 > 题目详情
17.等差数列{an}中,a2=3,a3+a4=9,则a1a6=14.

分析 由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3,解方程可求a1,d,即可求解a1a6

解答 解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3
解方程可得,a1=2,d=1
∴a1a6=2×7=14
故答案为:14.

点评 本题主要考查了等差数列的通项公式的简单应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.一个数列的前n项和Sn=5n2+3n,则这个数列的通项公式an=10n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-x-6≤0},B={x|x>1},则A∩B=(  )
A.[-2,3]B.(1,3]C.(1,3)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列$\{a_n^{\;}\}$满足a1=2,${a_{n+1}}=2{a_n}+2\;\;(n∈{N^*})$.
(1)求数列$\{a_n^{\;}\}$的通项公式an
(2)若数列$\{b_n^{\;}\}满足b_n^{\;}={log_2}({a_n}+2)$,设Tn是数列$\{\frac{b_n}{{{a_n}+2}}\}$的前n项和,求证:${T_n}<\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校举办运动会时,高一(1)班有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳和田径比赛的有3人,同时参加游泳和球类比赛的有3人,没有人同时参加三项比赛.则同时参加田径和球类比赛的人数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若tanα=3,则sin2α+2cos2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$的实轴长为(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y=f(x)的定义域是[-2,2],则函数g(x)=$\frac{f(2x)}{x}$的定义域是[-1,0)∪(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2x-3在[0,3)上的值域为[-4,0).

查看答案和解析>>

同步练习册答案