精英家教网 > 高中数学 > 题目详情

设函数f(x)的定义域为R,且f(x)是以3为周期的奇函数,f(1)>1,f(2)=loga2(a>0,且a≠1),则实数a的取值范围是


  1. A.
    a>1
  2. B.
    0<a<1或a>2
  3. C.
    数学公式
  4. D.
    0<a<1
C
分析:先根据函数的周期性得到f(2)=f(-1),再借助于f(x)为R上的奇函数求出f(1)的值,最后通过对对数函数底数的讨论分情况求出a的取值范围.
解答:∵f(x)是以3为周期的函数,
∴f(2)=f(-1)=loga2;
∵f(x)为R上的奇函数
∴f(-1)=-f(1),
∴f(1)=-loga2.
∴f(1)>1?-loga2>1?loga2<-log aa.
所以有
所以<a<1.
故选C.
点评:本题主要考查函数奇偶性与周期性的综合应用,以及对数不等式的解法.在解对数不等式时,一定要分底数大于1和底数大于0小于1两种情况来解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案