精英家教网 > 高中数学 > 题目详情

抛物线上的动点M到定点A(3,2)的距离与它的焦点F的距离之和的最小值为________

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面上的动点Q到定点F(0,1)的距离与它到定直线y=3的距离相等.
(1)求动点Q的轨迹C1的方程;
(2)过点F作直线l1交C2:x2=4y于A,B两点(B在第一象限).若|BF|=2|AF|,求直线l1的方程.
(3)试问在曲线C1上是否存在一点M,过点M作曲线C1的切线l2交抛物线C2于D,E两点,使得DF⊥EF?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是
2
3
a
,P到一条准线的距离是
8
3
a
,则此椭圆的离心率为
1
4

(2)若椭圆
x2
a2
+
y2
b2
=1
(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是
(2)(4)
(2)(4)
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是数学公式,P到一条准线的距离是数学公式,则此椭圆的离心率为数学公式
(2)若椭圆数学公式(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是________.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省荆州中学高二(下)期中数学试卷(文科)(解析版) 题型:填空题

给出4个命题:
(1)设椭圆长轴长度为2a(a>0),椭圆上的一点P到一个焦点的距离是,P到一条准线的距离是,则此椭圆的离心率为
(2)若椭圆(a≠b,且a,b为正的常数)的准线上任意一点到两焦点的距离分别为d1,d2,则|d12-d22|为定值.
(3)如果平面内动点M到定直线l的距离与M到定点F的距离之比大于1,那么动点M的轨迹是双曲线.
(4)过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为A1、B1,则FA1⊥FB1
其中正确命题的序号依次是    .(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010年浙江省宁波市镇海中学高考数学模拟试卷(文科)(解析版) 题型:解答题

已知平面上的动点Q到定点F(0,1)的距离与它到定直线y=3的距离相等.
(1)求动点Q的轨迹C1的方程;
(2)过点F作直线l1交C2:x2=4y于A,B两点(B在第一象限).若|BF|=2|AF|,求直线l1的方程.
(3)试问在曲线C1上是否存在一点M,过点M作曲线C1的切线l2交抛物线C2于D,E两点,使得DF⊥EF?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案