精英家教网 > 高中数学 > 题目详情

【题目】在五面体中, , , 平面平面.

(1)证明:直线平面

(2)已知为棱上的点,试确定点位置,使二面角的大小为.

【答案】(1)证明见解析;(2)点在靠近点的的三等分点处.

【解析】试题分析:(1证明一条直线垂直一个平面,只需要证明这两个平面垂直,直线垂直两个平面的交线即可,先证明 平面平面平面平面即可得到直线平面;(2根据题意,取的中点证明两两垂直为原点 的方向为轴,建立空间直角坐标系由二面角的大小为根据空间向量夹角余弦公式列方程即可确定在棱上的位置.

试题解析:(1四边形为菱形, 平面平面平面平面平面直线平面.

(2) 为正三角形,取的中点连接 平面平面平面平面平面平面两两垂直为原点 的方向为轴,建立空间直角坐标系, 1)知是平面的法向量 设平面的法向量为 二面角 解得 在靠近点的三等分处.

【方法点晴】本题主要考查线面垂直的判定定理以及用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C:4x2﹣y2=4及直线l:y=kx﹣1
(1)求双曲线C的渐近线方程及离心率;
(2)直线l与双曲线C左右两支各有一个公共点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2,数列{bn}满足b1=1,且bn+1=bn+2.
(1)求数列{an},{bn}的通项公式;
(2)设cn= ,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log 的图象关于原点对称,其中a为常数.
(1)求a的值;
(2)当x∈(1,+∞)时,f(x)+log (x+1)<m恒成立,求实数m的取值范围;
(3)若关于x的方程f(x)=log (x+k)在[2,3]上有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月29日,中国自主研制系全球最大水陆两栖飞机AG600将于2017年5月计划首飞,AG600飞机的用途很多,最主要的是森林灭火、水上救援、物资运输、海洋探测、根据灾情监测情报部门监测得知某个时间段全国有10起灾情,其中森林灭火2起,水上救援3起,物资运输5起,现从10起灾情中任意选取3起.

(1)求三种类型灾情中各取到1个的概率;

(2)设表示取到的森林灭火的数目,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论函数的单调性及极值;

(Ⅱ)若不等式内恒成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an=25n , 数列{bn}的通项公式为bn=n+k,设cn= 若在数列{cn}中,c5≤cn对任意n∈N*恒成立,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二(4)班有男生28人,女生21人,用分层抽样的方法从全班学生中抽取一个调查小组,调查该校学生对2013年1月1日起执行的新交规的知晓情况,已知某男生被抽中的概率为 ,则抽取的女生人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为.

(1)当时,求函数的值域;

(2)若函数在定义域上是减函数,求的取值范围;

3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值.

查看答案和解析>>

同步练习册答案