A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由函数的对称性可得f(x)=f(2-x),再由奇偶性可得f(x)=-f(x-2),由此可推得函数的周期,根据周期性可把f(2016),f(2015)转化为已知区间上求解
解答 解:因为f(x)图象关于x=1对称,所以f(x)=f(2-x),
又f(x)为奇函数,所以f(2-x)=-f(x-2),即f(x)=-f(x-2),
则f(x+4)=-f(x+2)=-[-f(x)]=f(x),
故4为函数f(x)的一个周期,
从而f(2015)+f(2016)=f(-1)+f(0),
而f(0)=0,f(-1),
故f(-1)+f(0)=1,
即f(2015)+f(2016)=1,
故选:C
点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | tanα=$\sqrt{3}$,tanβ=$\frac{\sqrt{7}}{3}$ | B. | tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\sqrt{3}$ | ||
C. | tanα=$\frac{2\sqrt{3}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$ | D. | tanα=$\frac{\sqrt{7}}{3}$,tanβ=$\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x>1,则x2>1”的否命题 | |
B. | 命题“若x>y,则|x|>y”的逆命题 | |
C. | 若k<5,则两椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$与$\frac{x^2}{9-k}+\frac{y^2}{5-k}=1$有不同的焦点 | |
D. | 命题“若方程x2+ky2=2表示焦点在y轴上的椭圆,则k的取值范围为(0,1)”的逆否命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=-x2 | B. | y=ex-e-x | C. | y=ln(|x|+1) | D. | y=x•sinx+cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com