精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直, 为等边三角形, 内部一点,点的延长线上,且PA=PB

Ⅰ)证明:OA=OB

Ⅱ)证明:平面PAB平面POC

【答案】1)见解析(2)见解析

【解析】试题分析:(1)由OA,OB,OC两两垂直得,由为等边三角形得OA=OB(2)取的中点,则由等腰三角形性质得,再由线面垂直判定定理得平面,所以,再根据OA,OB,OC两两垂直得 ,因此平面,最后根据面面垂直判定定理得结论.

试题解析:

证明:(Ⅰ)因为两两垂直,

所以

为等边三角形,

所以

Ⅱ)因为两两垂直

所以平面

平面,所以

的中点,连接

因为,所以

,所以平面

所以

,所以平面

因为平面,所以平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,点E是棱AB上的动点.

1)求证:

2)若直线与平面所成的角是45,请你确定点E的位置,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年电子商务蓬勃发展, 年某网购平台“双”一天的销售业绩高达亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出次成功交易,并对其评价进行统计,网购者对商品的满意率为,对快递的满意率为,其中对商品和快递都满意的交易为次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对商品满意与对快递满意之间有关系”?

对快递满意

对快递不满意

合计

对商品满意

对商品不满意

合计

(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取次交易进行问卷调查,详细了解满意与否的具体原因,并在这次交易中再随机抽取次进行电话回访,听取购物者意见.求电话回访的次交易至少有一次对商品和快递都满意的概率.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线是中心在原点,焦点在轴上的双曲线的右支,它的离心率刚好是其对应双曲线的实轴长,且一条渐近线方程是,线段是过曲线右焦点的一条弦,是弦的中点。

(1)求曲线的方程;

(2)求点轴距离的最小值;

(3)若作出直线使点在直线上的射影满足.当点在曲线上运动时,求的取值范围.

(参考公式:若为双曲线右支上的点,为右焦点,则.(为离心率))

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln x+ax2-2x,aR,a≠0

(1)若函数f(x)的图象在x=1处的切线与x轴平行,f(x)的单调区间;

(2)f(x)≤axx[,+∞)上恒成立,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点

Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;

Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD的底面是边长为a的棱形,PD⊥底面ABCD.

1)证明:AC⊥平面PBD

2)若PD=AD,直线PB与平面ABCD所成的角为45°,四棱锥PABCD的体积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对应的边分别为abc,已知b1c22cosAbcosC+ccosB)=a,则A__________;若M为边BC的中点,则|AM|__________

查看答案和解析>>

同步练习册答案