精英家教网 > 高中数学 > 题目详情
若双曲线
x2
a2
-
y2
16
=1(a>0)的焦点为F1(-5,0),F2(5,0),则双曲线的离心率为(  )
A、
4
3
B、
5
3
C、2
D、
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的b=4,c=5,由a,b,c的关系可得a=3,再由离心率公式即可得到.
解答: 解:双曲线
x2
a2
-
y2
16
=1的b=4,
由焦点坐标可得c=5,
a=
c2-b2
=
25-16
=3,
则e=
c
a
=
5
3

故选:B.
点评:本题考查双曲线的方程和性质,考查离心率公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x-2sinx+1.
(1)若当x∈R时,求f(x)的最小值及相应的值.
(2)设函数g(x)=msinx+2m,且当x∈[
π
6
3
]时,f(x)>g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机询问720名某高校在校大学生在购买食物时是否阅读营养说明,得到如表
阅读不阅读合计
男生160p
女生q80
合计720
已知这720名大学生中随机抽取1名,阅读营养说明的概率为
11
18

(1)求p,q的值;
(2)请根据独立性检验的知识来分析,有多少把握认为性别与阅读营养说明之间有关系.
温馨提示:随机变量K2=
n(ad-bc)
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集上定义运算?:x?y=x(1-y),若不等式(x-a)?(x+a)<1对任意实数x都成立,则实数a的取值范围是(  )
A、(-
1
2
3
2
)
B、(0,2)
C、(-1,1)
D、(-
3
2
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是双曲线
x2
9
-
y2
16
=1的两个焦点,点P在双曲线上,且|PF1|•|PF2|=32,求证:PF1⊥PF2

查看答案和解析>>

科目:高中数学 来源: 题型:

某网站体育版块足球栏目组发起了“射手的上一场进球与本场进球有无关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
有关系无关系不知道
人数500600900
(1)在所有参与调查的人中,用分层抽样的方法抽取样本,已知从持“有关系”态度的人中抽取了5人,求总样本容量.
(2)持“有关系”态度的人中,40岁以下和40岁以上(含40岁)的比例为2:3,从抽取的5个样本中,再任选2人作访问,求至少1人在40岁以下的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1+3•a2+32•a3+…+3n-1•an=
n
2
,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2=36的直径的倾斜角为30°,求过此直径端点的切线方程.

查看答案和解析>>

同步练习册答案