精英家教网 > 高中数学 > 题目详情
8.在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一 块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者5元钱;若摸得非同一颜色的3个球.摸球者付给摊主1元钱.
(1)摸出的3个球中至少有1个白球的概率是多少?
(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

分析 (1)摸出的3个球中至少有1个白球的对立事件是摸出的三个球都是黄球,由此利用对立事件概率公式能求出摸出的3个球中至少有1个白球的概率.
(2)设事件A={摸出的3个球为同一颜色},则P(A)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件A发生有10次,不发生90次.由此能求出这个摊主一个月(按30天计)可赚多少钱.

解答 解:(1)摸出的3个球中至少有1个白球的对立事件是摸出的三个球都是黄球,
∴摸出的3个球中至少有1个白球的概率P=1-$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=$\frac{9}{10}$.
(2)设事件A={摸出的3个球为同一颜色},
则P(A)=$\frac{{C}_{3}^{3}}{{C}_{5}^{3}}$=0.1,假定一天中有100人次摸奖,
由摸出的3个球为同一颜色的概率可估计事件A发生有10次,不发生90次.
则一天可赚90×1-10×5=40,
故这个摊主一个月(按30天计)可赚1200元.

点评 本题考查概率的求法及应用,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)满足f(x+1)=lg(2+x)-lg(-x).
(1)求函数f(x)的解析式及定义域;
(2)解不等式f(x)<1;
(3)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在区间$[{-\frac{π}{6}\;\;,\;\;\frac{π}{2}}]$上随机地取一个数x,则事件“$sinx≥\frac{1}{2}$”发生的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知离心率为2的双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的两条渐近线与抛物线y2=2px(p>0)的准线交于A,B两点,O为坐标原点,若${S_{△AOB}}=\sqrt{3}$,则p的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在空间直角坐标系中,点A(-1,2,m)和点B(3,-2,2)的距离为4$\sqrt{2}$,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大学生从全校学生中随机选取100名统计他们的鞋码大小,得到如下数据:
 鞋码 35 36 37 38 39 40 4142  4344  合计
 男生-- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
以各性别各鞋码出现的频率为概率.
(1)从该校随机挑选一名学生,求他(她)的鞋码为奇数的概率;
(2)为了解该校学生考试作弊的情况,从该校随机挑选120名学生进行抽样调查.每位学生从装有除颜色外无差别的4个红球和6个白球的口袋中,随机摸出两个球,若同色,则如实回答其鞋码是否为奇数;若不同色,则如实回答是否曾在考试中作弊.这里的回答,是指在纸上写下“是”或“否”.若调查人员回收到32张“是”的小纸条,试估计该校学生在考试中曾有作弊行为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在几何体ABCDEFG中,面ABCD是正方形,其对角线AC于BD相交于N,DE⊥平面ABCD,DE∥AF∥BG,H是DE的中点,DE=2AF=2BG.
(Ⅰ)若点R是FH的中点,证明:NR∥平面EFC;
(Ⅱ)若正方形ABCD的边长为2,DE=2,求二面角E-FC-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:ax-y+1=0与x轴,y轴分别交于点A,B.
(1)若a>0,点M(1,-1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;
(2)以线段AB为边在第一象限作等边三角形ABC,若a=-$\frac{\sqrt{3}}{3}$,且点P(m,$\frac{1}{2}$)(m>0)满足△ABC与△ABP的面积相等,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=loga(ax-t)(a>0且a≠1)在区间[$\frac{m}{2}$,$\frac{n}{2}$]上的值域为[m,n],则实数t的取值范围是(  )
A.(0,1)B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{4}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

同步练习册答案