精英家教网 > 高中数学 > 题目详情
2.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{sinA}{sinB}+\frac{sinB}{sinA}$=4cosC,且2a=c,则cosA=$\frac{5\sqrt{7}}{14}$.

分析 利用正弦定理把已知等式中角的正弦转化成边,利用余弦定理表示cosC,建立等式求得a和b的关系,最后求得a2+c2=b2,判断出为直角三角形.

解答 解:$\frac{sinA}{sinB}+\frac{sinB}{sinA}$=4cosC,可得$\frac{a}{b}+\frac{b}{a}=\frac{{a}^{2}+{b}^{2}}{ab}$=4cosC,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴$\frac{{a}^{2}+{b}^{2}}{ab}=4•\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,整理求得a2+b2-2c2=0,2a=c,b=$\sqrt{7}$a,
cosA=$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2cb}$=$\frac{{4a}^{2}+7{a}^{2}-{a}^{2}}{2×2a×\sqrt{7}a}$=$\frac{5\sqrt{7}}{14}$.
故答案为:$\frac{5\sqrt{7}}{14}$.

点评 本题主要考查了正弦定理和余弦定理的综合运用.主要是利用这两个定理完成边和角问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数y=x2-2mx+5,求函数在区间[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C1:x2+y2-3x-3y+3=0,圆C2:x2+y2-2x-2y=0,求两圆的公共弦所在的直线方程及弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2+bx+c的图象过点(1,13),且函数的对称轴方程为$x=-\frac{1}{2}$.
(1)求函数f(x)的解析式;
(2)设函数g(x)=[f(x)-x2-13]•|x|,求g(x)在区间[t,2]上的最小值H(t);
(3)探究:函数y=f(x)的图象上是否存在这样的点,使它的横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设a、b、c均为正数,且a+b+c=1,证明:
(1)$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{a}$≥1                              
(2)ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义min{a,b}=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,若关于x的方程$min\left\{{2\sqrt{x},|{x-2}|}\right\}=m$(m∈R)有三个不同的实根x1,x2,x3,则(  )
A.x1+x2+x3有最小值,x1x2x3无最大值
B.x1+x2+x3无最小值,x1x2x3有最大值
C.x1+x2+x3有最小值,x1x2x3有最大值
D.x1+x2+x3无最小值,x1x2x3无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知b>0,直线x-b2y-1=0与直线(3b2+1)x+ay+2=0互相垂直,则ab最小值等于(  )
A.1B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知α∈($\frac{π}{2}$,π),sinα=$\frac{\sqrt{5}}{5}$,$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cos2α,sin2α).求:
(1)判断$\overrightarrow{a}$与$\overrightarrow{b}$是否平行?
(2)求$\overrightarrow{a}$$•\overrightarrow{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${\int_1^2x^2}dx$=(  )
A.$\frac{7}{3}$B.3C.$\frac{8}{3}$D.4

查看答案和解析>>

同步练习册答案