精英家教网 > 高中数学 > 题目详情
1.已知正四棱台的上、下底面面积分别为4、16,一侧面面积为12,分别求该棱台的斜高、高、侧棱长.

分析 取上底A1B1C1D1的中心O1和下底ABCD的中心O,连结OO1,过O1作O1F⊥A1B1,交A1B1于F,过O作OE⊥AB,交AB于E,过F作FN⊥OE,交OE于N,由此能求出正四棱台的斜高、高、侧棱长.

解答 解:取上底A1B1C1D1的中心O1和下底ABCD的中心O,连结OO1
过O1作O1F⊥A1B1,交A1B1于F,过O作OE⊥AB,交AB于E,
过F作FN⊥OE,交OE于N,
由题意,正四棱台的上、下底面边长分别为2,4,
$\frac{2+4}{2}×EF$=12,∴正四棱台的斜高EF=4,
则正四棱台的高OO1=FN=$\sqrt{16-(2-1)^{2}}$=$\sqrt{15}$.
侧棱长=$\sqrt{16+1}$=$\sqrt{17}$

点评 本题考查正四棱台的高和斜高的求法,是基础题,解题时要认真审题,注意空间思维能力和下四棱台的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,且$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{BC}$=-5$\overrightarrow{a}$+6$\overrightarrow{b}$,$\overrightarrow{CD}$=7$\overrightarrow{a}$-2$\overrightarrow{b}$,共线的三点是A、B、D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在?ABCD中,AB=AC=1,∠ACD=90°,将它沿着对角线AC折起,使AB与CD成60°角,则BD的长度为(  )
A.2B.2或$\sqrt{2}$C.$\sqrt{2}$D.3$\sqrt{2}$或2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是$\frac{15}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等差数列{an}中,a1=-2 012,其前n项和为Sn,若$\frac{{{S_{12}}}}{12}-\frac{{{S_{10}}}}{10}$=2,则S2012的值等于(  )
A.-2 011B.-2 012C.-2 010D.-2 013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列不等式中,正确的是(  )
A.若x∈R,则$x+\frac{4}{x}≥4$B.若x∈R,则${x^2}+2+\frac{1}{{{x^2}+2}}≥2$
C.若x∈R,则${x^2}+1+\frac{1}{{{x^2}+1}}≥2$D.若a、b为正实数,则$\frac{{\sqrt{a}+\sqrt{b}}}{2}≥\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(n),满足f(0)=3,且f (n)=nf(n-1),n∈N+,则f(3)=(  )
A.6B.9C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2${\;}^{1-{x}^{2}}$的部分图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,则复数$\frac{1+i}{i}$=(  )
A.1+iB.1-iC.1+$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

同步练习册答案