精英家教网 > 高中数学 > 题目详情
(2013•揭阳一模)在四边形ABCD中,“
AB
=
DC
,且
.
AC
BD
=0
”是“四边形ABCD是菱形”的(  )
分析:根据
AB
=
DC
,以及共线向量定理可得AB∥CD,且AB=CD,从而可知在四边形ABCD是平行四边形,又由
.
AC
BD
=0
,得四边形ABCD的对角线互相垂直,因此得到四边形ABCD为菱形.反之也成立.再根据充要条件进行判断即得.
解答:解:由
AB
=
DC
可得四边形ABCD是平行四边形,
.
AC
BD
=0
得四边形ABCD的对角线互相垂直,
∴对角线互相垂直的平行四边形是菱形.
反之也成立.
∴“
AB
=
DC
,且
.
AC
BD
=0
”是“四边形ABCD是菱形”的充要条件.
故选C.
点评:此题是个基础题.考查必要条件、充分条件与充要条件的判断、共线向量定理以及向量在几何中的应用,考查学生利用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳一模)已知集合A={x|y=log2(x+1)},集合B={y|y=(
1
2
)x,x>0}
,则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)已知复数z1,z2在复平面内对应的点分别为A(0,1),B(-1,3),则
z2
z1
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)如图(1),在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB、DA折起,使EF∥AB且EF=2AB,得一简单组合体ABCDEF如图(2)示,已知M,N,P分别为AF,BD,EF的中点.
(1)求证:MN∥平面BCF;
(2)求证:AP⊥DE;
(3)当AD多长时,平面CDEF与平面ADE所成的锐二面角为60°?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)一简单组合体的三视图及尺寸如图(1)示(单位:cm)则该组合体的体积为.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳一模)已知抛物线C:x2=4y的焦点为F,直线x-2y+4=0与C交于A,B两点.则cos∠AFB的值为(  )

查看答案和解析>>

同步练习册答案