精英家教网 > 高中数学 > 题目详情
若函数f(x)是幂函数,且满足f(2)=4,则f(
1
2
)的值为
 
考点:幂函数的概念、解析式、定义域、值域
专题:函数的性质及应用
分析:设f(x)=xα,(α为常数).由4=2α,可得α=2即可.
解答: 解:设f(x)=xα,(α为常数).
∵4=2α,∴α=2.
∴f(x)=x2
f(
1
2
)=(
1
2
)2
=
1
4

故答案为:
1
4
点评:本题考查了幂函数的解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7位同学站成一排,按下列要求,各有多少不同排法,
(1)甲站在某一固定位置;
(2)甲站中间,乙与甲相邻;
(3)甲、乙相邻;
(4)甲、乙两人不相邻;
(5)甲、乙、丙三人相邻;
(6)甲、乙、丙三人中任何两人都不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ln(x-a)
x

(Ⅰ)若a=-1,证明:函数f(x)是(0,+∞)上的减函数;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y=0平行,求a的值;
(Ⅲ)若x>0,证明:
ln(x+1)
x
x
ex-1
(其中e=2.71828…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(4x2-4ax+a2
x
,其中a>0.
(I)当a=4时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[1,4]上的最小值为8,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={平面内的点(a,b)},N={f(x)|f(x)=acos2x+bsin2x},给出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,则点(1,
3
)的象f(x)的最小正周期为(  )
A、
π
2
B、
π
4
C、π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

若非整实数x、y、z满足:2x=3y=6z.则.
A、
x+y
z
∈(5,6)
B、
x+y
z
∈(4,5)
C、
x+y
z
∈(3,4)
D、
x+y
z
∈(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|2x-a|
-
(x+2)(x+b)
x2
为偶函数,则a=
 
,b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,A={x|x≤0},B={x|x>-1},则集合∁U(A∩B)=(  )
A、{x|-1<x≤0}
B、{x|-1≤x≤0}
C、{x|x≤-1或x≥0}
D、{x|x≤-1或x>0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平行四边形ABCD,点M1,M2,M3,…,Mn-1和N1,N2,N3,…,Nn-1分别将线段BC和DC,n等分(n∈N*,n≥2),如图,若
AM1
+
AM2
+…+
AMn-1
+
AN1
+
AN2
+…+
ANn-1
=45
AC
,则n=(  )
A、29B、30C、31D、32

查看答案和解析>>

同步练习册答案