(本小题满分10分)选修4-5:不等式选讲
已知a,b,c均为正数,证明:a2+b2+c2+≥6,并确定a,b,c为何值时,
等号成立.
证明:(证法一)
因为a,b,c均为正数,由平均值不等式得
a2+b2+c2≥ ①
≥
所以≥. ②
故a2+b2+c2+≥
又≥, ③
所以原不等式成立.
当且仅当a=b=c时,①式和②式等号成立.当且仅当时, ③式等号成立.
即当且仅当a=b=c=时,原式等号成立.
(证法二)
因为a,b,c均为正数,由基本不等式
a2+b2≥2ab,
b2+c2≥2bc
c2+a2≥2ac.
所以a2+b2+c2≥ab+bc+ac ①
同理≥ ②
故a2+b2+c2+()2
≥ab+bc+ac+3+3+3
≥6. ③
所以原不等式成立
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c=时,原式等号成立.
科目:高中数学 来源: 题型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com