【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.
(1)求函数的解析式;
(2)若方程在上有且仅有一个实根,求的取值范围;
(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.
【答案】(1)(2)(3)
【解析】
【试题分析】(1)借助平移的知识可直接求得函数解析式;(2)先换元将问题进行等价转化为有且只有一个根,再构造二次函数运用函数方程思想建立不等式组分析求解;(3)先依据题设条件求出函数的解析式,再运用不等式恒成立求出函数的最小值:
解:(1)
(2)设,则,原方程可化为
于是只须在上有且仅有一个实根,
法1:设,对称轴t=,则 ① , 或 ②
由①得 ,即,
由②得 无解, ,则。
法2:由 ,得,,,
设,则,,记,
则在上是单调函数,因为故要使题设成立,
只须,即,
从而有
(3)设的图像上一点,点关于的对称点为,
由点在的图像上,所以,
于是 即..
由,化简得,设,即恒成立.
解法1:设,对称轴
则③ 或 ④
由③得, 由④得或,即或
综上,.
解法2:注意到,分离参数得对任意恒成立
设,,即
可证在上单调递增
科目:高中数学 来源: 题型:
【题目】已知命题a2x2+ax﹣2=0在[﹣1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p”或“q”是假命题,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C: (a>2 )的右焦点为F,右顶点为A,上顶点为B,且满足 ,其中O 为坐标原点,e为椭圆的离心率.
(1)求椭圆C的方程;
(2)设点P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN||BM|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F2、F1是双曲线 (a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高考数学试题中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的.评分标准规定:“每题只选1项,答对得5分,不答或答错得0分.”某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:
(1)得50分的概率;
(2)得多少分的可能性最大;
(3)所得分数ξ的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:在△ABC中,若AB<BC,则sinC<sinA;命题q:已知a∈R,则“a>1”是“ <1”的必要不充分条件.在命题p∧q,p∨q,(¬p)∨q,(¬p)∧q中,真命题个数为( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1中,侧面ABB1A1为正方形,延长AB到D,使得AD=BD,平面AA1C1C⊥平面ABB1A1 , A1C1= AA1 , ∠C1A1A= .
(1)若E,F分别为C1B1 , AC的中点,求证:EF∥平面ABB1A1;
(2)求平面A1B1C1与平面CB1D所成的锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com