(1)(C)′= (C为常数).?
(2)(xn)′= (n∈N*).?
(3)(ax)′= .?
(4)(ex)′= .?
(5)(logax)′= .?
(6)(lnx)′= .?
(7)(sinx)′= .?
(8)(cosx)′= .?
(9)[±]′= .?
(10)[·]′= .?
(11)[]′= 〔g(x)≠0〕.
科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题
已知函数其中a>0.
(I)求函数f(x)的单调区间;
(II)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(III)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值。
【考点定位】本小题主要考查导数的运算,利用导数研究函数的单调性、函数的零点,函数的最值等基础知识.考查函数思想、分类讨论思想.考查综合分析和解决问题的能力.
查看答案和解析>>
科目:高中数学 来源:2013届广东省肇庆市高二下学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知函数;
(1)求; (2)求的最大值与最小值.
【解析】第一问利用导数的运算法则,幂函数的导数公式,可得。
第二问中,利用第一问的导数,令导数为零,得到
然后结合导数,函数的关系判定函数的单调性,求解最值即可。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com