精英家教网 > 高中数学 > 题目详情
7.设x,y∈R,a>1,b>1,若ax=by=2,a+b=4,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 由题意可得$\frac{1}{x}$+$\frac{1}{y}$=log2(ab),再利用基本不等式可求得ab≤4,从而可得答案.

解答 解:∵a>1,b>1,若ax=by=2,
∴x=loga2,y=logb2,
∴$\frac{1}{x}$=log2a,$\frac{1}{y}$=log2b,
∴$\frac{1}{x}$+$\frac{1}{y}$=log2a+log2b=log2(ab)≤log2${(\frac{a+b}{2})}^{2}$=log24=2,
故选:A.

点评 本题考查对数的概念,考查基本不等式,求得ab≤4是难点,也是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.命题“?x>0,f(x)<x”的否定形式是(  )
A.?x>0,f(x)≥xB.?x≤0,f(x)≥xC.?x0>0,f(x0)≥x0D.?x0≤0,f(x0)≥x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法正确的是③④⑤.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②y=$\sqrt{x-3}$+$\sqrt{2-x}$是函数解析式;
③y=$\frac{\sqrt{1{-x}^{2}}}{1-|3-x|}$是非奇非偶函数;
④若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
⑤幂函数y=xα的图象不经过第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.

(Ⅰ)在CD上找一点F,使AD∥平面EFB;
(Ⅱ)求三棱锥C-ABC的高.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+$\frac{1}{x}$,f′(x)为f(x)的导函数,则f′(1)的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y={log_2}(5-4x-{x^2})$的递增区间是(  )
A.(-∞,2]B.(-5,-2]C.[-2,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\frac{ax+1}{x+2}(a∈R)$,则“f(2)<f(3)”是“f(x)在区间(-2,+∞)上单调递增”的什么条件.(  )
A.“充要”B.“充分不必要”
C.“必要不充分”D.“既不充分也不必要”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式|2x+1|-|x-4|≥m恒成立,则实数m的取值范围是(  )
A.(-∞,-1]B.(-∞,-$\frac{5}{2}$]C.(-∞,-$\frac{9}{2}$]D.(-∞,-5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(2x+1)定义域是[-1,0],则y=f(x+1)的定义域是(  )
A.[-1,1]B.[0,2]C.[-2,0]D.[-2,2]

查看答案和解析>>

同步练习册答案