精英家教网 > 高中数学 > 题目详情

【题目】若函数有三个不同的零点,则实数的取值范围是(

A.B.

C.D.

【答案】B

【解析】

,可得,令,可得,令,令,其中,作出函数的图象,根据函数有三个零点可得出的两根的取值范围,利用二次函数的零点分布得出关于实数的不等式组,可求得实数的取值范围.

,则.

,可得

,则,即,设

构造函数,其中

,令,得

列表如下:

单调递增

单调递增

极大值

单调递减

函数)的图象如下图所示:

由于函数有三个不同的零点,而关于的二次方程至多有两个根.

当关于的二次方程有两根时,设这两根分别为,则

此时,,解得

,则,关于的二次方程为,两根分别为

时无实根,只有一个实根,

此时,函数只有两个零点,不合乎题意.

综上所述,实数的取值范围是.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点.

1)若,求直线的方程;

2)过点作直线交抛物线两点,若线段的中点分别为,直线轴的交点为,求点到直线距离和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是(

R上单调递减

的图像关于原点对称

的图象上的点到坐标原点的距离的最小值为3

④函数不存在零点

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让.我们将符合这条规定的称为“礼让斑马线”,不符合这条规定的称为“不礼让斑马线”.下表是六安市某十字路口监控设备所抓拍的5个月内驾驶员“不礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

“不礼让斑马线”的驾驶员人数

120

105

100

85

90

1)根据表中所给的5个月的数据,可用线性回归模型拟合的关系,请用相关系数加以说明;

2)求“不礼让斑马线”的驾驶员人数关于月份之间的线性回归方程;

3)若从45月份“不礼让斑马线”的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;

参考公式:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点E上,且,将三角形沿线段折起到的位置,(如图2.

1)求证:平面平面

2)在线段上是否存在点M,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为,上、下顶点分别为,四边形的面积为,坐标原点O到直线的距离为.

1)求椭圆C的方程;

2)过椭圆C上一点P作两条直线,分别与椭圆C相交于异于点P的点AB,若四边形为平行四边形,探究四边形的面积是否为定值.若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:

①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;

②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.

已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.

1)求一轮中三人全回答正确的概率;

2)分别求甲在第一轮、第二轮、第三轮胜出的概率;

3)记为甲在第轮胜出的概率,为乙在第轮胜出的概率,求,并比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】面积为2中,分别是的中点,点在直线EF上,则的最小值是(

A.B.C.D.

查看答案和解析>>

同步练习册答案