精英家教网 > 高中数学 > 题目详情

(本题满分14分)如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,

且侧面PAD⊥底面ABCD,E 为侧棱PD的中点。

⑴求证:PB//平面EAC;

⑵若AD=2AB=2,求直线PB与平面ABCD所成角的正切值;

⑶当为何值时,PB⊥AC ?

(本题满分14分)

解:(1)连结BD交AC于O,连结EO,

因为O、E分别为BD、PD的中点, 所以EO//PB,     ……2分

,所以PB//平面EAC。…4分

(2)设N为AD中点,连接PN,则........5分

又面PAD⊥底面ABCD,所以,PN⊥底面ABCD……………6分

所以为直线PB与平面ABCD所成的角,…………7分

又AD=2AB=2,则PN=,         ………8分

所以tan=,即PB与平面ABCD所成角正切为值。。。。。。9分

(3)由(2)知,NB为PB在面ABCD上的射影,要使PB⊥AC,需且只需NB⊥AC。。。10分

在矩形ABCD中,设AD=1,AB=x,

,得,………………………………………11分

解之得:, ……………………13分

所以,当时,PB⊥AC。                   …………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分)如图2,为了绿化城市,拟在矩形区域ABCD内建一个矩形草坪,另外△AEF内部有一文物保护区域不能占用,经过测量AB=100m,BC=80m,AE=30m,AF=20m,应该如何设计才能使草坪面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)

         如图,已知直三棱柱ABC—A1B1C1,E是棱CC1上动点,F是AB中点,

   (1)求证:

   (2)当E是棱CC1中点时,求证:CF//平面AEB1

   (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中点,求证:BE//平面ACF

(Ⅱ)求直线BE与平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题

(本题满分14分)如图,正方形的边长都是1,平面平面,点上移动,点上移动,若

(I)求的长;

(II)为何值时,的长最小;

(III)当的长最小时,求面与面所成锐二面角余弦值的大小.

 

查看答案和解析>>

科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题

(本题满分14分)如图,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分别是C1A和C1B的中点。

   (1)求证:EF//平面ABC;

   (2)求证:平面平面C1CBB1;

   (3)求异面直线AB与EB1所成的角。

 

查看答案和解析>>

同步练习册答案