精英家教网 > 高中数学 > 题目详情

【题目】正方形沿对角线折成直二面角,下列结论:①异面直线所成的角为;②;③是等边三角形;④二面角的平面角正切值是;其中正确结论是______.(写出你认为正确的所有结论的序号)

【答案】①②③④

【解析】

作出翻折后的空间图形,取的中点,根据面面垂直的性质有平面,然后对各个选项进行分析计算,从而判断其真假.

设正方形的边长为2,的中点为,连结.

,

又因为直二面角,所以 平面.

在直角三角形中,..

对①,取的中点分别为,连结.

=1=1.

所以异面直线所成的角为,

直角三角形,,所以为等边三角形.

,所以①正确.

对②,由,有,

则可以得到平面,又平面

所以,所以②正确.

对③,由题意可知,是等边三角形.

所以③正确.

对④,由,则,

,,所以为二面角的平面角.

在直角三角形中,,所以所以④正确.

故答案为:①②③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题:

,则的逆否命题为真命题

函数在区间上为增函数的充分不必要条件

③若为假命题,则均为假命题

④对于命题,则为:

其中真命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足.

(1)求证:数列是“间等差数列”,并求间公差

(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;

(3)类似地:非零数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,试问数列是否为“间等比数列”,若是,求最大的整数使得对于任意,都有;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有个红球,个白球,若从中任取个球,则这个球中有白球的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数轴于两点(不重合),交轴于. 三点.下列说法正确的是( )

圆心在直线上;

的取值范围是

半径的最小值为

存在定点,使得圆恒过点.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形平面分别是的中点.

(1)求证:直线平面

(2)求证:直线直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,定义椭圆上的点的“伴随点”为.

(1)求椭圆上的点的“伴随点”的轨迹方程;

(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;

(3)当 时,直线交椭圆 两点,若点 的“伴随点”分别是 ,且以为直径的圆经过坐标原点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

同步练习册答案