精英家教网 > 高中数学 > 题目详情
12.已知直线l1的方程为Ax+3y+C=0,直线l2的方程为2x-3y+4=0,若l1与l2的交点在y轴上,则C的值为(  )
A.4B.-4C.±4D.与A有关

分析 直线2x-3y+4=0与y轴的交点坐标,代入直线Ax+3y+C=0,求出可求C.

解答 解:直线2x-3y+4=0与y轴的交点(0,$\frac{4}{3}$),
代入直线Ax+3y+C=0,可得4+C=0,解得C=-4.
故选B.

点评 本题考查直线的交点坐标的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.一直线l与平行四边形ABCD中的两边AB、AD分别交于E、F,且交其对角线AC于K,若$\overrightarrow{AB}$=2$\overrightarrow{AE}$,$\overrightarrow{AD}$=3$\overrightarrow{AF}$,$\overrightarrow{AC}$=λ$\overrightarrow{AK}$(λ∈R),则λ=(  )
A.2B.$\frac{5}{2}$C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),给出以下四个论断:
①它的周期为π;
②它的图象关于直线x=$\frac{π}{12}$对称;
③它的图象关于点($\frac{π}{3}$,0)对称;
④在区间(-$\frac{π}{6}$,0)上是增函数,
以其中两个论断为条件,另两个论断作结论,写出你认为正确的一个命题,条件①②结论③④.(注:填上你认为正确的一种答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2cos2x•tanx+cos2x的最小正周期为π;最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=4sinωx•cos(ωx+$\frac{π}{6}$)+1(ω>0),其图象上有两点A(s,t),B(s+2π,t),其中-2<t<2,线段AB与函数图象有五个交点.
(Ⅰ)求ω的值;
(Ⅱ)若函数f(x)在[x1,x2]和[x3,x4]上单调递增,在[x2,x3]上单调递减,且满足等式x4-x3=x2-x1=$\frac{2}{3}$(x3-x2),求x1、x4所有可能取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x}-7,x<0}\end{array}\right.$,则f(f(-4))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=sin(2x+$\frac{π}{3}$)的图象可以由函数y=sin2x的图象(  )得到.
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=sinx+1与y=$\frac{x+2}{x}$在[-a,a](a∈Z,且a>2017)上有m个交点(x1,y1),(x2,y2),…,(xm,ym),则(x1+y1)+(x2+y2)+…+(xm+ym)=(  )
A.0B.mC.2mD.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A,B,C的对边分别为a,b,c,且满足$\frac{2a-b}{cosB}=\frac{c}{cosC}$.
(1)求角C的值;
(2)若c=7,△ABC的面积为$10\sqrt{3}$,求a+b的值.

查看答案和解析>>

同步练习册答案