精英家教网 > 高中数学 > 题目详情

(10分)某运动员射击一次所得环数的分布如下:

0~6

7

8

9

10

0

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.

(I)求该运动员两次都命中7环的概率

(II)求的分布列

(III)求的数学期望

 

【答案】

(I) 0.04

(II)

(III) 9.07

【解析】本试题主要考查了独立事件概率的乘法公式好分布列的求解,以及期望公式的的综合运用。

(1)中,利用两次都命中事件同时发生的概率乘法公式得到

(2)中,因为由题意可知ξ可能取值为7、8、9、10,那么分别得到各个取值的概率值,得到分布列。

(3)利用期望公式求解期望值。

解:(I)由题意知运动员两次射击是相互独立的,根据相互独立事件同时发生的概率得到,该运动员两次都命中7环的概率为P=0.2×0.2=0.04

(II)ξ可能取值为7、8、9、10

P(ξ=7)=0.04         P(ξ=8)=2×0.2×0.3+0.32=0.21

P(ξ=9)=2×0.2×0.3+2×0.3×0.3+0.32=0.39

P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36

∴ξ的分布列为

∴ξ的数学期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07

 

练习册系列答案
相关习题

科目:高中数学 来源:2011届广东省高三高考全真模拟试卷数学理卷二 题型:解答题

.(本小题满分12分)第16届亚运会将于2010年11月在广州市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,(1)恰有3次射击成绩为10环的概率;
(2)至少有3次射击成绩为10环的概率;
(3)记“射击成绩为10环的次数”为,求.(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源:2010年江西省四校联考高二上学期期中考试数学文卷 题型:解答题

(本小题满分12分)某射击运动员在一次射击中,命中10环、9环、8环、7环的概率分别为0.2、0.35、0.2、0.15。求此运动员

(1)在一次射击中,命中10环或9环的概率。

(2)在一次射击中,命中环数小于8环的概率。

(3)在两次射击中,至少有一次击中10环的概率。

 

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广州市七区联考高二数学(理)下学期期末监测 题型:解答题

(本小题满分12分)

第16届亚运会将于今年11月在我市举行,射击队运动员们正在积极备战. 若某运动员每次射击成绩为10环的概率为. 求该运动员在5次射击中,

(1)恰有3次射击成绩为10环的概率;

(2)至少有3次射击成绩为10环的概率;

(3)射击成绩为10环的均值(数学期望).

(结果用分数表示)

 

 

查看答案和解析>>

同步练习册答案