精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,ABE的中点.

1)求证:

2)求二面角的余弦值.

【答案】1)见解析(2

【解析】

1)通过证明,得平面,从而即可得到本题答案;

2)以M点为原点,x轴,y轴,以过点M且垂直平面ABCD的方向为z轴,建立空间直角坐标系,分别求出平面ABE和平面PBE的法向量,然后套用公式即可得到本题答案.

1)证明:如图,设M的中点,连接

在梯形中,由已知易得

中,,则

是平面内的两条相交直线,

所以平面,而在平面内,

所以

2)解:作PH垂直于MC,垂足为H,以M点为原点,x轴,y轴,以过点M且垂直平面ABCD的方向为z轴,建立空间直角坐标系.

中,因为,,所以,则

易知,又,所以,即为直角三角形,

易得

所以

因为

所以平面的一个法向量是

所以平面的一个法向量是

由图可知,二面角为锐角,所以二面角的余弦值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20203月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如下表:

购票人数

1~50

51~100

100以上

门票价格

13/

11/

9/

两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为(

A.20B.25C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于两点.

(Ⅰ)若,求以为直径的圆被轴所截得的弦长;

(Ⅱ)分别过点作抛物线的切线,两条切线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )

A.这五年,出口总额之和比进口总额之和

B.这五年,2015年出口额最少

C.这五年,2019年进口增速最快

D.这五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的列联表.

喜爱数学课

不喜爱数学课

合计

男生

90

20

110

女生

70

40

110

合计

160

60

220

1)根据上面的列联表判断,能否有的把握认为喜爱数学课与性别有关;

2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1男生的概率.

参考公式:.

P

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假如你的公司计划购买台机器,该种机器使用三年后即被淘汰,在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元,在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费,现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

1)若,求的函数解析式.

2)若要求维修次数不大于的频率不小于0.8,求的值.

3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为123455个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如125),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如531),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10.

1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;

2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点,点为抛物线上的动点.

1)若的最小值为,求实数的值;

2)设线段的中点为,其中为坐标原点,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆节假期期间,某商场为掌握假期期间顾客购买商品人次,统计了1017:00-2300这一时间段内顾客0这一时间段内顾客购买商品人次,统计发现这一时间段内顾客购买商品共5000人次顾客购买商品时刻的频率分布直方图如下图所示,其中时间段7:00 11:0011:00 15:0015:00 ~19:0019:00~23:00,依次记作[711),[1115),[1519),[1923].

1)求该天顾客购买商品时刻的中位数t与平均值(同一组中的数据用该组区间的中点值代表);

2)现从101日在该商场购买商品的顾客中随机抽取100名顾客,经统计有男顾客 40人,其中10人购物时刻在[1923](夜晚),女顾客60人,其中50人购物时刻在[719)(白天),根据提供的统计数据,完成下面的2×2列联表,并判断是否有90%的把握认为男顾客更喜欢在夜晚购物”?

附:

查看答案和解析>>

同步练习册答案