精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱柱中,侧棱底面且点分别为的中点
(1)求证:平面
(2)求二面角的正弦值
(3)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长

【答案】
(1)

见解答


(2)


(3)


【解析】如图,以为原点建立空间直角坐标系,依题意可得,又因为分别为的中点,得
(1)证明:依题意,可得为平面的一个法向量,,由此可得,,又因为直线平面,所以平面
(2),设为平面的法向量,则,即,不妨设,可得
为平面的一个法向量,则,又,得,不妨设,可得因此有,于是,所以二面角的正弦值为
(3)依题意,可设,其中从而为平面的一个法向量,由已知得整理得又因为,解得所以线段的长为
【考点精析】利用空间向量的定义对题目进行判断即可得到答案,需要熟知在空间,具有大小和方向的量称为空间向量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·陕西)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天气

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天气


(1)在4月份任取一天,估计西安市在该天不下雨的概率;
(2)西安市某学校拟从4月份的一个晴天开始举行连续两天的运动会,估计运动会期间不下雨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本
中,青年教师有320人,则该样本的老年教师人数为( )

A.90
B.100
C.180
D.300

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,分别为的中点.

(1)求证:平面
(2)若平面 求平面与平面所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)设函数的定义域均为,且是奇函数,是偶函数,,其中e为自然对数的底数.
(Ⅰ)求的解析式,并证明:当时,
(Ⅱ)设,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是
A.若垂直于同一平面,则平行
B.若m,n平行于同一平面,则m与n平行
C.若不平行,则在内不存在与平行的直线
D.若m,n不平行,则m与n不可能垂直于同一平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设fn(x)是等比数列1,x,x2...,xn的各项和,其中x>0,nN, ,n≥2,
(1)证明:函数Fn(x)=fn(x)-2在(,1)内有且仅有一个零点(记为xn),且xn=+xnn+1
(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较fn(x)与gn(x)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ) (1.)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2.)二项式 的展开式按一定次序排列,则无理项互不相邻的概率是
(3.)已知 ,则
(4.)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)

查看答案和解析>>

同步练习册答案