精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥平面,底面为直角梯形,,且,.

(1)点在线段上运动,且设,问当为何值时,平面,并证明你的结论;
(2)当,且求四棱锥的体积.

(1)见解析;(2).

解析试题分析:(1)取PD中点G,连接AG、FG,证明即可;(2)由条件可得为等腰直角三角形,利用三棱锥的体积公式计算即可.
试题解析::(1)当时,取PD中点G,连接AG、FG,则
平面 ∴平面
(2)∵平面 ∴为等腰直角三角形

考点:线面平行的判定、线面垂直、三棱锥体积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,长方体中,为线段的中点,.

(Ⅰ)证明:⊥平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的菱形,, 底面,,的中点,的中点.

(Ⅰ)求四棱锥的体积;
(Ⅱ)证明:直线平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形均为菱形,设相交于点,若,且.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面为平行四边形的四棱柱中,底面,,,

(Ⅰ)求证:平面平面
(Ⅱ)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体中,,点分别是的中点.

(1)EF∥平面ACD;
(2)求证:平面⊥平面
(3)若平面⊥平面,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱中,的中点.

(Ⅰ) 若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1
(Ⅱ)在(Ⅰ)的条件下,设AB=1,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。

(Ⅰ)证明:面
(Ⅱ)求所成的角;
(Ⅲ)求面与面所成二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在直三棱柱中,分 别是棱上的点(点 不同于点),且的中点.

求证:(1)平面平面(2)直线平面

查看答案和解析>>

同步练习册答案