【题目】为迎接2016年“猴”年的到来,某电视台举办猜奖活动,参与者需先后回答两道选择题,问题A有三个选项,问题B有四个选项,每题只有一个选项是正确的,正确回答问题A可获奖金1千元,正确回答问题B可获奖金2千元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止.假设某参与者在回答问题前,选择每道题的每个选项的机会是等可能的.
(Ⅰ)如果该参与者先回答问题A,求其恰好获得奖金1千元的概率;
(Ⅱ)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.
【答案】解:(Ⅰ)随机猜对问题A的概率P1= ,随机猜对问题B的概率P2= .
设参与者先回答问题A,且恰好获得奖金1千元为事件M,
则P(M)=P1(1﹣P2)= = ,
即参与者先回答问题A,其恰好获得奖金1千元的概率为 .
(Ⅱ)参与者回答问题的顺序有两种,分别讨论如下:
①先回答问题A,再回答问题B.参与者获奖金额ξ可取0,1000,3000,
则P(ξ=0)=1﹣P1= ,
P(ξ=1000)=P1(1﹣P2)= ,
P(ξ=3000)=P1P2= = ,
∴Eξ=0× +1000× +3000× =500.
②先回答问题B,再回答问题A,参与者获奖金额η,可取0,2000,3000,
则P(η=0)=1﹣P2=1﹣ ,
P(η=2000)=(1﹣P1)P2= = ,
P(η=3000)=P2P1= .
∴Eη=0× +2000× +3000× ≈583.
∴先回答问题B,再回答问题A,能使该参与者获奖金额的期望值较大
【解析】(Ⅰ)随机猜对问题A的概率P1= ,随机猜对问题B的概率P2= ,利用概率的乘法公式可求参与者先回答问题A,恰好获得奖金1千元的概率;(Ⅱ)参与者回答问题的顺序有两种,先回答问题A,再回答问题B.先回答问题B,再回答问题A,做出两种情况下的获胜的期望,进行比较,分类讨论.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.
(1)求S=的概率;
(2)求S的分布列及数学期望E(S).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在区间[0,2]内的最小值m(a);
(2)若f(x)在区间[0,2]内不同的零点恰有两个,且落在区间[0,1),(1,2]内各一个,求a﹣b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题共l2分)
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.
(Ⅰ)求证:PB1∥平面BDA1;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABO﹣A1B1O1中,侧面AOO1A1与侧面OBB1O1是全等的直角梯形,且OO1⊥OB,OO1⊥OA,平面AOO1A1⊥平面OBB1O1 , OB=3,O1B1=1,OO1= .
(1)证明:AB1⊥BO1;
(2)求直线AO1与平面AOB1所成的角的正切值;
(3)求二面角O﹣AB1﹣O1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣lnx(a∈R)
(1)当a=1时,求函数y=f(x)的单调区间;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范围;
(3)若a= ,证明:ex﹣1f(x)≥x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com