精英家教网 > 高中数学 > 题目详情
若f(x)=
lgx,x>0
x+
a
0
3t2dt,x≤0
,f(f(1))=1,则a的值为.
A、1B、2C、-1D、-2
考点:定积分,函数的值
专题:导数的概念及应用
分析:先求出f(1)=0,再根据定积分求出f(x)的表达式,代入值即可
解答: 解:f(1)=lgx=0,
∴f(f(1))=1,
即f(0)=1,
∴f(x)=x+
a
0
3t2dt=x+t3|
 
a
0
=x+a3
∴0+a3=1,
解得a=1,
故选:A.
点评:本题考查了函数值的求法和定积分的计算,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若曲线C1:ρ=2cosθ与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数a,b满足a+2b=2,则3a+9b的最小值是(  )
A、6
B、12
C、2
3
D、4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:ρ=2cosθ与曲线C2:y-mx-m=0有2个不同的交点,则实数m的取值范围是(  )
A、(-
3
3
3
3
B、(-
3
3
,0)∪(0,
3
3
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+1
x+2
(a为常数).
(1)若a=1,证明:f(x)在(-2,+∞)上为单调递增函数;
(2)若a<0,且当x∈(-1,2)时,f(x)的值域为(-
3
4
,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知内接于圆的四边形的对角线互相垂直,求证:圆心到一边的距离等于这条边所对边长的一半.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个函数f(x)在其定义区间内对任意实数x,y都满足f(
x+y
2
)≤
f(x)+f(y)
2
,则称这个函数是下凸函数,下列函数:①f(x)=2x;②f(x)=x3;③f(x)=log2x(x>0); ④f(x)=
x,x<0
2x,x≥0
中,是下凸函数的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)(x∈R)满足f(1)=l,f′(x)<
1
2
,则不等式f(x)<
x
2
+
1
2
的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=1”是“a2=1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

同步练习册答案