精英家教网 > 高中数学 > 题目详情

【题目】若离散型随机变量ξ的概率分布如表所示,则a的值为( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

【答案】A
【解析】解:由离散型随机变量ξ的概率分布表知:

解得a=

所以答案是:A.

【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍横坐标不变,再将所得到的图像向右平移个单位长度.

求函数的解析式,并求其图像的对称轴方程;

已知关于的方程内有两个不同的解

1求实数m的取值范围;

2证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的一段图象如图所示:将的图象向右平移)个单位,可得到函数的图象,且图象关于原点对称.(1)求的值.

(2)求 的最小值,并写出的表达式.

(3)t>0,关于x的函数在区间上最小值为-2,求t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若Sn=2an﹣n,则 + + + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP= ,∠AOQ=α,α∈[0, ].

(1)若Q( ),求cos(α﹣ )的值;
(2)设函数f(α)=sinα( ),求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+4xsinα+tanα(0<a<)有且仅有一个零点

(Ⅰ)求sin2a的值;

(Ⅱ)若cos2β+2sin2β=+sinβ, β∈,求β-2α的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知O的半径是1,点C在直径AB的延长线上,BC=1,点P是O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧

(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;

(2)求四边形OPDC面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:

(1)证明:数列是等比数列;

(2)设表示向量间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围

(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0且a≠1)的图象恒过定点A,若点A在mx+ny+2=0上,其中mn>0,则 的最小值为

查看答案和解析>>

同步练习册答案