精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD,垂足为M.
(Ⅰ)求证:AM⊥PD;
(Ⅱ)求三棱锥B-AMC的体积;
(III)已知点N在AC上,当N 点在什么位置时,使得MN∥平面PBC.
分析:(Ⅰ)要证AM⊥PD,只要证明PD⊥平面AMB 即可,因为已知BM⊥PD,所以只要证明PD⊥AB即可,为此需要证明AB⊥平面PAD,由已知条件可以得出;
(Ⅱ)要计算三棱锥B-AMC的体积,只要求出把△BAC作为底面时的高即可,只要作MH⊥AD,则可以证明MH⊥底面ABCD;
(Ⅲ)点N在AC上,使得MN∥平面PBC,只要理解对角线BD与AC相较于一点N,利用三角形的中位线可以证出.
解答:解:(Ⅰ)证明:∵PA⊥平面ABCD,∴PA⊥AB.
又∵BA⊥AD,AD∩PA=A,
∴AB⊥平面PAD,∴AB⊥PD.
∵BM⊥PD,AB∩BM=B,
∴PD⊥平面ABM.
∴PD⊥AM.
(Ⅱ)由(Ⅰ)可知:AM⊥PD.
∵在△PAD中,AP=AD=2,∴M是PD的中点.
过点M作MH⊥AD,则MH⊥底面ABCD,且MH=
1
2
AP=1

∴V三棱锥B-AMC=
1
3
×S△ABC×MH
=
1
3
×
1
2
×2×1×1
=
1
3

(Ⅲ)连接BD,交AC于点N,当点N为对角线AC与BD的交点时,满足MN∥平面PBC.
证明:∵PM=MD,BN=ND,∴MN∥PB.
又MN?平面PBC,PB?平面PBC,
∴MN∥平面PBC.
点评:熟练掌握线面平行与垂直的判定定理和性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在四棱锥P-ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA∥平面BDM.
(1)求证:M为PC中点;
(2)求平面ABCD与平面PBC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.
(1)求证:CM∥平面PAD;
(2)点C到平面PAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面四边形ABCD是正方形,PD⊥平面ABCD,E为PC的中点.
求证:
(1)PA∥平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=2AB=2,M为PD上的点,若PD⊥平面MAB
(I)求证:M为PD的中点;
(II)求二面角A-BM-C的大小.

查看答案和解析>>

同步练习册答案