精英家教网 > 高中数学 > 题目详情
精英家教网如图,正三棱柱ABC-A1B1C1的各棱长都2,E,F分别是AB,A1C1的中点,则EF的长是(  )
A、2
B、
3
C、
5
D、
7
分析:要求EF的长度,可以利用正三棱柱的侧面与底面垂直的关系,连接AC的中点G与F、E;也可以作FG⊥AC于G,连接EG,在△EFG中求解EF即可.
解答:精英家教网解:如图所示,取AC的中点G,连EG,FG,FG∥C1C
C1C⊥底面ABC,则C1C⊥EG FG⊥EG;
则易得:FG=2,EG=1,故EF=
5

故选C.
点评:本题考查学生对棱柱的结构认识,以及学生的综合能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1各棱长都等于a,E是BB1的中点.
(1)求直线C1B与平面A1ABB1所成角的正弦值;
(2)求证:平面AEC1⊥平面ACC1A1
(3)求点C1到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州二模)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)设点O为AB1上的动点,当OD∥平面ABC时,求
AOOB1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中(注:底面为正三角形且侧棱与底面垂直),BC=CC1=2,P,Q分别为BB1,CC1的中点.
(Ⅰ)求多面体ABC-A1PC1的体积;
(Ⅱ)求A1Q与BC1所成角的大小.

查看答案和解析>>

同步练习册答案