精英家教网 > 高中数学 > 题目详情

【题目】台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律如图,有一张长方形球台ABCD,现从角落A沿角的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则的值为(

A.B.C.1D.

【答案】AD

【解析】

根据题意,分两种情况作图:第一种情况:现从角落A沿角的方向把球打出去,球先接触边;第二种情况:现从角落A沿角的方向把球打出去,球先接触边;然后利用三角形全等即可求解.

第一种情况:现从角落A沿角的方向把球打出去,球先接触边,反射情况如下:

此时,根据反射的性质,,所以,,中点,取,则,设,则,所以,可得,

第二种情况:现从角落A沿角的方向把球打出去,球先接触边,反射情况如下:

此时,根据反射的性质,,所以,,中点,取,则,设,则,所以,可得,

故答案选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对一个量用两种方法分别算一次,由结果相同而构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.

1)根据恒等式两边的系数相同直接写出一个恒等式,其中

2)设,利用上述恒等式证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:

1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)

2)利用的相关性及表格中前8组数据求出之间的回归方程;(结果保留两位小数)

3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.

附:相关数据:

表格中前8组数据的一些相关量:

相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:

相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

1)若上存在两个极值点,求的取值范围;

2)若,函数与函数的图象交于,且线段的中点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校李老师本学期任高一A班、B班两个班数学课教学,两个班都是50个学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是( )

A. A班的数学成绩平均水平好于B班

B. B班的数学成绩没有A班稳定

C. 下次B班的数学平均分高于A班

D. 在第一次考试中,A、B两个班总平均分为78分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.

1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000的个数为,求的分布列和数学期望;

2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468.庞加莱购买的25个面包质量的统计数据(单位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

尽管上述数据都落在上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由

附:

,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量

,则

通常把发生概率在0.05以下的事件称为小概率事件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I)若,求函数的极值和单调区间;

II)若在区间上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求的普通方程和曲线C的直角坐标方程;

2)求曲线C上的点到距离的最大值及该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是,直线与椭圆交于两点.

1)若为椭圆短轴上的一个顶点,且是直角三角形,求的值;

2)若,且,求证:的面积为定值.

查看答案和解析>>

同步练习册答案