设项数均为()的数列、、前项的和分别为、、.已知,且集合=.
(1)已知,求数列的通项公式;
(2)若,求和的值,并写出两对符合题意的数列、;
(3)对于固定的,求证:符合条件的数列对(,)有偶数对.
(1);(2)时,数列、可以为(不唯一)6,12,16,14;2,8,10,4,时,数列对(,)不存在.(3)证明见解析.
【解析】
试题分析:(1)这实质是已知数列的前项和,要求通项公式的问题,利用关系来解决;
(2)注意到,从而,又,故可求出,,这里我们应用了整体思维的思想,而要写出数列对(,),可通过列举法写出;(3)可通过构造法说明满足题意和数列对是成对出现的,即对于数列对(,),构造新数列对,(),则数列对(,)也满足题意,(要说明的是及=且数列与,与不相同(用反证法,若相同,则,又,则有均为奇数,矛盾).
试题解析:(1)时,
时,,不适合该式
故, 4分
(2)
又
得,=46,=26 8分
数列、可以为:
① 16,10,8,12;14,6,2,4 ② 14,6,10,16;12,2,4,8
③ 6,16,14,10;4,12,8,2 ④ 4,14,12,16;2,10,6,8
⑤ 4,12,16,14;2,8,10,6 ⑥ 16,8,12,10;14,4,6,2 10分
(3)令,() 12分
又=,得
=
所以,数列对(,)与(,)成对出现。 16分
假设数列与相同,则由及,得,,均为奇数,矛盾!
故,符合条件的数列对(,)有偶数对。 18分
考点:(1)数列的前项和与的关系;(2)整体思想与列举法;(3)构造法.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市浦东新区高三上学期期末考试(一模)理科数学试卷(解析版) 题型:解答题
设项数均为()的数列、、前项的和分别为、、.已知集合=.
(1)已知,求数列的通项公式;
(2)若,试研究和时是否存在符合条件的数列对(,),并说明理由;
(3)若,对于固定的,求证:符合条件的数列对(,)有偶数对.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com