精英家教网 > 高中数学 > 题目详情

设函数

(1)若不等式的解集.求的值;

(2)若的最小值.

 

【答案】

(1)   (2)9

【解析】本试题主要是考查了二次函数的性质和不等式的综合运用。

(1)由题意得,……………3

解得……………7

(2)……………9

;……………13

当且仅当时取=

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=(1+
1
n
)x
(n∈N,且n>1,x∈N).
(Ⅰ)当x=6时,求(1+
1
n
)x
的展开式中二项式系数最大的项;
(Ⅱ)对任意的实数x,证明
f(2x)+f(2)
2
>f'(x)(f'(x)是f(x)的导函数);
(Ⅲ)是否存在a∈N,使得an<
n
k-1
(1+
1
k
)
<(a+1)n恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知n∈N*,设函数fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函数y=f2(x)-kx(k∈R)的单调区间;
(2)是否存在整数t,对于任意n∈N*,关于x的方程fn(x)=0在区间[t,t+1]上有唯一实数解?若存在,求t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三第二次联考数学文卷 题型:解答题

设函数

(1)若时,函数取得极值,求函数的图像在处的切线方程;

(2)若函数在区间内不单调,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

(1)若时,函数取得极值,求函数的图像在处的切线方程;

(2)若函数在区间内不单调,求实数的取值范围。

查看答案和解析>>

同步练习册答案