精英家教网 > 高中数学 > 题目详情

实系数一元二次方程x2-ax+2b=0的两根分别在区间(0,1)和(1,2)上,则2a+3b的取值范围是________.

(2,9)
分析:先根据实系数一元二次方程x2-ax+2b=0的两根分别在区间(0,1)和(1,2)上,得到线性约束条件,画出可行域,把特殊点坐标代入即可求出结论.
解答:设f(x)=x2-ax+2b,
因为实系数一元二次方程x2-ax+2b=0的两根分别在区间(0,1)和(1,2)上,
所以:?

由图得:Z=2a+3b过点B(1,0)时取最小值2,过点A(3,1)时取最大值9.
又因为不含边界,
故2a+3b∈(2,9).
故答案为:(2,9).
点评:本题主要考查了一元二次方程根的分布问题以及简单的线性规划,利用几何意义求最值,是对基础知识的综合考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1,x2,且 0<x1<1,x2>1,则
b
a
的取值范围是(  )
A、(-1,-
1
2
]
B、(-1,-
1
2
)
C、(-2,-
1
2
]
D、(-2,-
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z是关于x的实系数一元二次方程x2+mx+25=0的一个根,同时复数z满足关系式|z|+z=8+4i.
(1)求|z|的值及复数z;
(2)求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1、x2,并且0<x1<2,x2>2,则
b
a-1
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的实系数一元二次方程在复数集中两个根α、β,有下列结论:①α、β互为共轭复数;②α+β=-
b
a
,α•β=
c
a
;③b2-4ac≥0;④|α-β|=
(α+β)2-4αβ
.正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

实系数一元二次方程x 2 + a x + 2 b = 0的一根在区间( 0,1 )内,另一根在区间( 1,2 )内,则的取值范围是       

查看答案和解析>>

同步练习册答案