精英家教网 > 高中数学 > 题目详情
10.已知如图所示,四棱锥P-ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD⊥平面PAB;
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.

分析 (1)由已知条件推导出AB⊥BC,PB⊥BC,由此能证明平面PAD⊥平面PAB.
(2)以A为原点,以平面ABP内过点A作AB的垂线为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,由VD-PAC=VP-ADC,利用等积法能求出三棱锥D-PAC的体积.
(3)求出$\overrightarrow{PC}$和平面ABCD的法向量,由此利用向量法能求出直线PC与平面ABCD所成角的正弦值.

解答 (1)证明:∵四棱锥P-ABCD的底面ABCD为矩形,∴AB⊥BC,
∵∠PBC=90°,∵PB⊥BC,
∵AB∩PB=B,∴BC⊥平面PAB,
∵AD∥BC,∴AD⊥平面PAB,
∵AD?平面PAD,∴平面PAD⊥平面PAB.
(2)解:以A为原点,以平面ABP内过点A作AB的垂线为x轴,AB为y轴,AD为z轴,
建立空间直角坐标系,
由已知得P($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),A(0,0,0),
$\overrightarrow{AP}$=($\frac{\sqrt{3}}{2},-\frac{1}{2},0$),平面ADC的法向量$\overrightarrow{m}$=(1,0,0),
P到平面ADC的距离h=$\frac{|\overrightarrow{AP}•\overrightarrow{m}|}{|\overrightarrow{m}|}$=$\frac{\frac{\sqrt{3}}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
S△ADC=$\frac{1}{2}×2×1$=1,
∴三棱锥D-PAC的体积:
VD-PAC=VP-ADC=$\frac{1}{3}×h×{S}_{△ADC}$=$\frac{1}{3}×\frac{\sqrt{3}}{2}×1$=$\frac{\sqrt{3}}{6}$.
(3)解:P($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0),C(0,2,1),$\overrightarrow{PC}$=(-$\frac{\sqrt{3}}{2}$,$\frac{5}{2}$,1),
平面ABCD的法向量$\overrightarrow{m}$=(1,0,0),
设直线PC与平面ABCD所成角的为θ,
则sinθ=|cos<$\overrightarrow{m}$,$\overrightarrow{PC}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{PC}}{|\overrightarrow{m}|•|\overrightarrow{PC}|}$|=|$\frac{-\frac{\sqrt{3}}{2}}{\sqrt{\frac{3}{4}+\frac{25}{4}+1}}$|=$\frac{\sqrt{6}}{8}$.
∴直线PC与平面ABCD所成角的正弦值为$\frac{\sqrt{6}}{8}$.

点评 本题考查面面垂直的证明,考查三棱锥的体积的求法,考查直线与平面所成角的正弦值的求法,是中档题,解题时要注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合U={1,2,3,4},A={1},B={2,4},则A∪(∁UB)=(  )
A.{1}B.{3}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+mx2(m∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0,f′(x)为f(x)的导函数,求证:f′($\frac{a+b}{2}$)<$\frac{f(a)-f(b)}{a-b}$<f′(b);
(Ⅲ)求证:$\frac{2}{3}+\frac{2}{5}+\frac{2}{7}+…+\frac{2}{2n+1}$<ln(n+1)<1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知1,2,3,4,5,6,六个数字,排成2行3列,且要求第一行的最大数比第二行的最大数要大,第一行的最小数要比第二行的最小数也要大,则所有的排列方法种数有(  )
A.144B.480C.216D.432

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,凸四边形ABCD,求作一个三角形,使得该三角形的面积和凸四边形ABCD的面积相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市在2 015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N (120,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[85,95),第二组[95,105),…第六组[135,145],得到如图所示的频率分布直方图.
(I)试估计该校数学的平均成绩;
(Ⅱ)这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望.
附:若 X~N(μ,σ2),则P(u-3σ<X<u+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,AB=AC,以B为圆心,BC为半径画弧,交AC于点D,求证:BC2=AC•CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在矩形ABCD中,AB=3$\sqrt{3}$,BC=3.沿对角线将△BCD折起,使点C移到C点,且C点在平面ABD的射影O恰在AB上.
(1)求证:BC⊥平面ACD;
(2)求直线AB与平面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1}.
(1)求(A∪B)∩C的元素个数为2的充要条件;
(2)求(A∪B)∩C的元素个数为3的充要条件.

查看答案和解析>>

同步练习册答案